If gravity is the ONLY force acting on an object, that's when we say the object is in "<em>free fall</em>".
Explanation:
Suppose the cheetah is initially positioned at x=0 (m) from the reference, and the gazelle is intially at poisiton x=d (m).
Then, at the worst case, that is when cheetah is running at the maximum case, the position of the gazelle relative to the reference must be larger than that of cheetah.
In equation form,



I believe it's diffraction because it can be nothing else except this ;)
Answer:
The Roche limit for the Moon orbiting the Earth is 2.86 times radius of Earth
Explanation:
The nearest distance between the planet and its satellite at where the planets gravitational pull does not torn apart the planets satellite is known as Roche limit.
The relation to determine Roche limit is:
....(1)
Here
is radius of planet and
are density of planet and moon respectively.
According to the problem,
Density of Earth,
= 5.5 g/cm³
Density of Moon,
= 3.34 g/cm³
Consider
be the radius of the Earth.
Substitute the suitable values in the equation (1).
![Roche\ limit=2.423\times R_{E}\times\sqrt[3]{\frac{5.5 }{3.34 } }](https://tex.z-dn.net/?f=Roche%5C%20limit%3D2.423%5Ctimes%20R_%7BE%7D%5Ctimes%5Csqrt%5B3%5D%7B%5Cfrac%7B5.5%20%7D%7B3.34%20%7D%20%7D)
