Answer:

Explanation:
As per the formula of thermal expansion we know that

so here we will have



so here change in the length of the rod is given as




Answer:
Explanation:
Let the equilibrium position of third charge be x distance from q₁.
Force on third charge due to q₁
= 9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x²
Force on third charge due to q₂
= 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
Both the force will act in opposite direction and for balancing , they should be equal.
9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x² = 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
5 / x² = 2 / ( .4 - x )²
Taking square root on both sides
2.236 / x = 1.414 / .4 - x
2.236 ( .4 - x ) = 1.414 x
.8944 - 2.236 x = 1.414 x
.8944 = 3.65 x
x = .245 m
24.5 cm
So the third charge should be at a distance of 24.5 cm from q₁ .
The awnsers is D all the planet's in the solar system rotate the same direction or else they would bump into each other
Answer:
3.0 seconds
Explanation:
We can solve the problem by considering the horizontal motion of the ball only. In fact, the ball moves by uniform motion (constant speed) along the horizontal direction, since there are no forces acting in this direction. The horizontal speed of the ball is given by:

and it does not change during the motion.
We also know that the ball travels a horizontal distance of d = 60 m, so we can find the time it takes to cover the distance by using the equation:

A) be too hot to support life