Answer:
The equation: (NH₄)₂SO₄ = 2NH4(+) + SO4(-2)
The number of moles = 5 g / 132.14 g/mol = 0.038 mol
The number of molecules = 0.038 X 6.022x10^23 = 2.29x10^23
the number of positive ions present in the ammonium sulphate solution:
2 positive ions for every 1 molecule of (NH₄)₂SO₄
so 2 x 2.29x10^23 = 4.58x10^23
the number of negative ions present in the ammonium sulphate solution
1 negative ion for every 1 molecule of (NH₄)₂SO₄
so 1 x 2.29x10^23 = 2.29x10^23
the total number of ions present in the ammonium sulphate solution
4.58x10^23 + 2.29x10^23 = 6.87x10^23
Answer:
See the answer below
Explanation:
The chaparral biome is a temperate biome with a characteristic high temperature and dryness during summer and mild rainy winters and springs. The biome can be found in relatively small amounts in the major continents of the world with its rich plant and animal diversity who have successfully adapted to the conditions of the biome.
Due to the high biodiversity of the chaparral biome, <u>one would expect it to be resilient to the loss of a single species.</u> <em>The more the biodiversity of a biome or community, the more resilient such biome or community would be to the loss of species and lower the biodiversity, the more sensitive the community would be to the loss of species. </em>
Answer:
space
Explanation:
Matter possesses mass and occupies space around it. The space is measured using the property known as volume. Different states of matter occupy spaces in different ways depending on how big, small, rigid, flowing etc. they are. Hence, each state of matter appears a bit differently and they have different volume.
Answer:
3). 1.30 × 10^(24) molecules
Explanation:
From avogadro's law which state that equal volume of all gases at the same temperature and pressure contain the same number of molecules.
We can relate it to this question as;
V₁/n₁ = V₂/n₂
Where;
V₁ is initial volume
n₁ is initial number of molecules
V₂ is final volume
n₂ is final number of molecules
Thus at STP, we have V₁ = V₂ and as such Plugging in the relevant values gives;
5/(1.30 x 10^(24)) = 5/n₂
n₂ = 1.30 x 10^(24) molecules