Answer:
Exocytosis
Explanation:
Some molecules are simply too big to move via a transport protein or the plasma membrane. To carry these macromolecules in or out of the cell, cells employ two more active transport pathways. Macromolecules or big particles are transported across the plasma membrane via Vesicles transport or other cytoplasmic structures. They are of two types, Endocytosis and Exocytosis
From the given information, Exocytosis is the right answer.
It is the process of vesicles combining with the plasma membrane thereby releasing their contents to the exterior of the cell. When a cell creates components for export, such as proteins, or when it gets rid of a waste product or a toxin, exocytosis occurs. Exocytosis is the process by which newly generated membrane proteins and membrane lipids are transported on top of the plasma membrane.
Answer:
(a) a = 5.08x10⁻⁸ cm
(b) r = 179.6 pm
Explanation:
(a) The lattice parameter "a" can be calculated using the following equation:
<em>where ρ: is the density of Th = 11.72 g/cm³, N° atoms/cell = 4, m: is the atomic weight of Th = 232 g/mol, Vc: is the unit cell volume = a³, and </em>
<em>: is the Avogadro constant = 6.023x10²³ atoms/mol. </em>
Hence the lattice parameter is:

![a = \sqrt[3]{1.32 \cdot 10^{-22} cm^{3}} = 5.08 \cdot 10^{-8} cm](https://tex.z-dn.net/?f=%20a%20%3D%20%5Csqrt%5B3%5D%7B1.32%20%5Ccdot%2010%5E%7B-22%7D%20cm%5E%7B3%7D%7D%20%3D%205.08%20%5Ccdot%2010%5E%7B-8%7D%20cm%20)
(b) We know that the lattice parameter of a FCC structure is:

<em>where r: is the atomic radius of Th</em>
Hence, the atomic radius of Th is:
I hope it helps you!
Answer:
The Bohr atomic model did not make correct predictions of large- sized atoms and provided sufficient information only for smaller atoms.