Answer: 0.790 g/cm3
Explanation:
The density of acetone is 790 Kg/m3.
To convert from Kg to g we multiply by 1000 (1 Kg = 1000 g)
To convert from m3 to cm3 we multiply by 10∧6
So, The density of acetone in (g/cm3) = (790 x 1000) / (10∧6) = 0.79 g/cm3
Answer:
A soma dos dois tipos de energia, potencial e cinética, resultam na energia mecânica. Ou seja, ambas compõe a energia mecânica.
Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

where 
Difference in potential between the points is
![kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}](https://tex.z-dn.net/?f=kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7B0.2%5Ctext%7B%20m%7D%7D%20-%5Cleft%28%20-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D%20%3D%20%5Cdfrac%7BkQ%7D%7B0.2%5Ctext%7B%20m%7D%7D%20%3D%20%5Cdfrac%7B9%5Ctimes10%5E9%5Ctext%7B%20F%2Fm%7D%5Ctimes3%5Ctimes10%5E%7B-6%7D%5Ctext%7B%20C%7D%7D%7B0.2%5Ctext%7B%20m%7D%7D)

(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.
![270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]](https://tex.z-dn.net/?f=270%5Ctimes10%5E3%20%3D%20kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7Bx%7D-%5Cleft%28-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D)



The charge chould be moved to infinity
Answer:
94.248 g/sec
Explanation:
For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:

And, the velocity of blood pumping is 30 cm^2
Now apply the following formula to solve the total current

Q = 94.248 g/sec
Basically we applied the above formula So, that the total current could come
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if <em>all</em> of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.