1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
2 years ago
15

Suppose 2.10 C of positive charge is distributed evenly throughout a sphere of 1.30-cm radius. 1) What is the charge per unit vo

lume for this situation
Physics
1 answer:
Anuta_ua [19.1K]2 years ago
3 0

Answer:

\rho=2.28\times 10^5\ C/m^3

Explanation:

Given that,

Charge, Q = 2.1 C

The radius of sphere, r = 1.3 cm = 0.013 m

We need to find the charge per unit volume for this situation. It can be calculated a follows:

\rho=\dfrac{Q}{\dfrac{4}{3}\pi r^3}\\\\\rho=\dfrac{2.1}{\dfrac{4}{3}\pi \times (0.013)^3}\\\\\rho=2.28\times 10^5\ C/m^3

So, the charge per unit volume is 2.28\times 10^5\ C/m^3.

You might be interested in
A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
andreev551 [17]

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}

Energy

\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})

m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}

Where:

m_{1}, m_{2} - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

v_{1,o}, v_{2,o} - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

v_{1}, v_{2} - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If m_{1} = 0.400\,kg, m_{2} = 0.900\,kg, v_{1,o} = +5.86\,\frac{m}{s}, v_{2,o} = 0\,\frac{m}{s}, the system of equation is simplified as follows:

2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}

13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}

Let is clear v_{1,f} in first equation:

0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}

v_{1,f} = 5.86-2.25\cdot v_{2,f}

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}

13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}

13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}

2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0

2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0

There are two solutions:

v_{2,f} = 0\,\frac{m}{s} or v_{2,f} = 3.606\,\frac{m}{s}

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: (v_{2,f} = 3.606\,\frac{m}{s})

v_{1,f} = 5.86-2.25\cdot (3.606)

v_{1,f} = -2.254\,\frac{m}{s}

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

3 0
3 years ago
In an electric vehicle, each wheel is powered by its own motor. The vehicle weight is 4,000 lbs. By regenerative braking, its sp
Slav-nsk [51]

Answer:

the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh

Explanation:

Given that;

weight of vehicle = 4000 lbs

we know that 1 kg = 2.20462

so

m = 4000 / 2.20462 =  1814.37 kg

Initial velocity V_{i} = 60 mph = 26.8224 m/s

Final velocity V_{f} = 30 mph = 13.4112 m/s

now we determine change in kinetic energy

Δk = \frac{1}{2}m(  V_{i}² - V_{f}² )

we substitute

Δk = \frac{1}{2}×1814.37( (26.8224)² - (13.4112)² )

Δk = \frac{1}{2} × 1814.37 × 539.5808

Δk = 489500 Joules

we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule

so

Δk = 489500 / 3.6 × 10⁶

Δk = 0.13597 ≈ 0.136 kWh

Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh

4 0
3 years ago
What is the total resistance in this circuit?
saul85 [17]

Answer:B

Explanation:

6 0
3 years ago
A negatively charged particle is attracted to
nignag [31]

Answer:

B. posititvely charged particles

Explanation:

Opposites attract to each other, and the same charge repels.

8 0
3 years ago
Read 2 more answers
A person walks 2 miles every day to work, leaving her front porch at 7:00 A.M. and arriving at work at 7:30 A.M. ON the way home
Nataly [62]

Answer:

The displacement is zero miles

Explanation:

The displacement of an object that moves from point A to point B is defined as

d =B-A

Where d is the displacement of the object. The displacement does not depend on the trajectory of the object. It only depends on the linear distance between the end point and the starting point.

In this case we know that the person walks from home to work and then walks from work to home. Therefore, the total displacement is the linear distance between the point where its journey begins and the point where the route ends.

The tour begins on the front porch of your house and ends on the front porch of your house (when you return from work). If we call A to the front porch of the house then the displacement is:

d = A-A = 0

The displacement is zero miles, since the person finishes the journey just where it started (front porch)

7 0
3 years ago
Other questions:
  • Water flows through a horizontal pipe. The diameter of the pipe at point b is larger than the diameter of the pipe at point a. W
    14·1 answer
  • How much of the electromagnetic spectrum is visible to us?
    5·2 answers
  • 1. What was the electromagnetic spectrum ?
    5·1 answer
  • The hypothetical situation is described by a physics teacher: two equal mass objects moving at the same speed
    9·1 answer
  • A certain sound is recorded by a microphone. The same microphone then detects a second sound, which is identical to the first on
    15·1 answer
  • A rock hits the ground with a speed of 13 m s−1
    8·1 answer
  • A 19 kg solid disk of radius0.44 m is rotated about an
    15·1 answer
  • The viscosity of a fluid is to be measured by a viscometer constructed of two 80-cm-long concentric cylinders. The outer diamete
    9·1 answer
  • How many x-ray photons per second are created by an x-ray tube that produces a flux of x rays having a power of 1.00 W
    14·1 answer
  • The voltage between two parallel plates separated by a distance of 3. 0 cm is 120 v. The electric field between the plates is?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!