The height at time t is given by
h(t) = -4.91t² + 34.3t + 1
When the ball reaches maximum height, its derivative, h'(t) = 0.
That is,
-2(4.91)t+34.3 = 0
-9.82t + 34.3 = 0
t = 3.4929 s
Note that h''(t) = -9.82 (negative) which confirms that h will be maximum.
The maximum height is
hmax = -4.91(3.4929)² + 34.3(3.4929) + 1
= 60.903 m
Answer:
The ball attains maximum height in 3.5 s (nearest tenth).
The ball attains a maximum height of 60.9 m (nearest tenth)
A table can be made from minerals but other kinds of solids as well
It would be B. since the scanning shows what the terrain is down there
(I listened)
Here, K.E. = 1/2 * mv²
So, K.E. = 1/2 * (1200) * (24)²
K.E. = 1/2 * 1200 * 576
K.E. = 600 * 576
K.E. = 345,600 J
Hope this helps!
When the object slides across the rough surface some of its potential energy will be lost to friction.
<h3>Conservation of mechanical energy</h3>
The law of conservation of mechanical energy states that the total mechanical energy of an isolated system is always constant.
M.A = P.E + K.E
When the object slides across the rough surface, some of the potential energy of the object will be converted into kinetic energy while the remaining potential energy will be converted into thermal energy due to frictional force of the rough surface.
P.E = K.E + thermal energy
Learn more about conservation of energy here: brainly.com/question/166559