Answer:
The book sitting on the desk
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position relative to the ground.
It is calculated as:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object with respect to the ground
From the formula, we see that the GPE of an object is directly proportional to the heigth h: so, the higher the location of the object, the larger the GPE.
In this problem, we are comparing a book sitting on a desk and the same book sitting on the floor. In the two situations, the mass of the book is the same; however, in the first case, the value of the height is h, while in the second case, the value of h is lower (because the book is located at a lower height, being on the floor).
Therefore, we can conclude that the first book must have a larger GPE, since it has a larger value of h.
Answer:
Iconic bonds don't burn easily
Explanation:
Covalent bonds are non metals. Covalent bond (sharing), low temp, low temp, burn easily, poor, polar covalent is good and non-polar covalent is bad.
Ionic - metals and nonmetals, ionic bond is when electrons are gained or lost, high temp, high temp, doesn't burn easily, good, good
Answer:The people are part of a softball team. They appear happy, they are showing number one with their fingers, and they are holding a trophy. They probably won the softball league championship
Explanation:
Answer:
The pH of the solution is 5.31.
Explanation:
Let "
is the dissociation of weak acid - HCN.
The dissociation reaction of HCN is as follows.

Initial C 0 0
Equilibrium c(1-
) c
c
Dissociation constant = 

In this case weak acids
is very small so, (1-
) is taken as 1.


From the given the concentration = 0.050 M
Substitute the given value.

![[H_{3}O^{+}]=c\alpha](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3Dc%5Calpha)
![[H_{3}O^{+}]=0.05\times 9.8\times 10^{-4}= 4.9\times10^{-6}](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D0.05%5Ctimes%209.8%5Ctimes%2010%5E%7B-4%7D%3D%204.9%5Ctimes10%5E%7B-6%7D)
![pH= -log[H_{3}O^{+}]](https://tex.z-dn.net/?f=pH%3D%20-log%5BH_%7B3%7DO%5E%7B%2B%7D%5D)
![=-log[4.9\times10^{-6}]](https://tex.z-dn.net/?f=%3D-log%5B4.9%5Ctimes10%5E%7B-6%7D%5D)

Therefore, The pH of the solution is 5.31.