Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
Hi, you've asked an incomplete question. However, I assumed you are referring to the article found on the Scientific American website.
Explanation:
<em>Remember,</em> according to that article we are told that scientists notice that these insects have a long nymphal (immature form before becoming adults) stage, one that can last up to 13 to 17 years on the ground before they leave the ground looking for mating partners.
Because it is only after mating occurs at this point that their eggs are laid, that is why scientists believe that cicadas only reproduce every 13 or 17 years.
Mutual
They are balanced steadily which means they’re at the same point
the answer you are looking for is 4.22 kj.