Answer:
A medium.
<h3>Explanation:</h3>
It's the material the wave is travelling through.
Answer:
22.4L of one mole of any gas
or you can use PV=nRT
3.45*22.4=77.28
Explanation:
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
The answer to this question would be: <span> 10 °K
Kelvin and Celcius scales are different by 273</span> degrees but their ratio is the same. One degree in Kelvin is equal to one degree in Celcius. That mean, 10 °C change in Celcius would be same as <span> 10 °K changes in Kelvin too. </span>
Answer:
The temperature is always lower.
Explanation:
The temperature is always lower at the end of the state as compared to beginning of the state. We can see in the given data, the temperature is higher at the beginning i. e. 140 degree Celsius but with the passage of time, the temperature of a state decreases constantly and the temperature at the end is lower i. e. 20 degree Celsius. So we can conclude that the temperature is always lower.