1. False
Elements bond to form compounds.
Consider that compounds are essentially clumped up atoms. Knowing this, we know that atoms don’t separate, but rather combine in order to make compounds.
2. True
3. False
Atoms cam lose or gain electrons to form ionic bonds.
When at atom doesn’t have enough electrons to become stable, it will either give or take electrons from another atom in order to become stable. However, because of the fact that the atoms become oppositely charge, they attract each other, thus forming an ionic bond
-T.B.
From the balanced equation 2KClO3 → 2KCl + 3O2, the coefficients are the following:
coefficient 2 in front of potassium chlorate KClO3
coefficient 2 in front of potassium chloride KCl
coefficient 3 in front of oxygen molecule O2
We got this balanced equation by identifying the number of atoms of each element that we have in the given equation KClO3 → KCl + O2.
Looking at the subscripts of each atom on the reactant side and on the product side, we have
KClO3 → KCl + O2
K=1 K=1
Cl=1 Cl=1
O=3 O=2
We can see that the oxygens are not balanced. We add a coefficient 2 to the 3 oxygen atoms on the left side and another coefficient 3 to the 2 oxygen
atoms on the right side to balance the oxygens:
2KClO3 → KCl + 3O2
The coefficient 2 in front of potassium chlorate KClO3 multiplied by the subscript 3 of the oxygen atoms on the left side indicates 6 oxygen atoms just as the coefficient 3 multiplied by the subscript 2 on the right side indicates 6 oxygen atoms.
The number of potassium K atoms and chloride Cl atoms have changed as well:
2KClO3 → KCl + 3O2
K=2 K=1
Cl=2 Cl=1
O=6 O=6
We now have two potassium K atoms and two chloride Cl atoms on the reactant side, so we add a coefficient 2 to the potassium chloride KCl on the product side:
2KClO3 → 2KCl + 3O2, which is our final balanced equation.
K=2 K=2
Cl=2 Cl=2
O=6 O=6
The potassium, chlorine, and oxygen atoms are now balanced.
D = M/V = 76g / 22ml = 3.4g/ml
Half ~ D = 38g / 11ml = 3.4g/ml
Even if the object you had was cut in half, it’s density would remain the same.
Answer:
It causes light to slow down significantly
Explanation:
The index of refraction of a substance describes the speed of light in that substance, as a ratio of the speed of light in vacuum to its speed in that substance.
just search it up and there is your answer