Answer:
See attached
Explanation:
Structural geometry is the key to understanding particle-particle interactions on a physical levels. Suggest a review of molecular geometry and states of matter for a more in depth understanding. Doc
Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.
Answer:
Number of moles = 2.89 mol
Explanation:
Given data:
Number of moles of sugar = ?
Mass of sugar = 990 g
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C₁₂H₂₂O₁₁:
12× 12 + 22×1.008 + 16×11 = 342.2 g/mol
Number of moles = 990 g / 342.2 g/mol
Number of moles = 2.89 mol
The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3