the answer is C. the solute polar water itself is a polar solvent so it combines well with other polar solvents (which basically have polar molecules)
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂
Answer:
957.7mL
Explanation:
Using the formula below;
CaVa = CbVb
Where;
Ca = concentration of acid (M)
Va = volume of acid (mL)
Cb = concentration of base (M)
Vb = volume of base (mL)
According to the information provided in this question:
Ca = 0.166 M
Cb = 0.013 M
Va = 75mL
Vb = ?
Using CaVa = CbVb
0.166 × 75 = 0.013 × Vb
12.45 = 0.013Vb
Vb =12.45/0.013
Vb = 957.7mL
The answer would most likely be False
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.