Answer:

Explanation:
Bases are the species which furnish hydroxide ions in the solution or is capable of forming bonds with electron deficient species as they are electron rich species. When a base accepts a proton, it changes into a acid which is known as its conjugate acid.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations. Only the species which are present in aqueous state dissociate. So, the net ionic equation of aqueous solution of ammonia is shown below as:-

This is molarity: moles of solute/liters of solution. (Not molality)
1. Plug in what we know:
500 mL = 0.5 L
0.80 = moles/0.5
0.80*0.5 = moles
moles = 0.4
2. NaOH is given as 40 g/mole, so calculate the grams:
0.4 * 40 = 16 grams
answer: 16 grams
<em>Answer:</em>
- Conc. of K+ ions = 0.90 M
- Coc. of SO4∧-2 = 0.45 M
<em>Explanation:</em>
<em>Data Given:</em>
Conc. of H2SO4 = 0.450
As sulphoric acid is a strong electrolyte, it completely dissociate into ions.
H2SO4 ⇆ 2K+ + SO4∧-2
.450 M K2SO4 means that there is .450 mols of K2SO4 in every liter of solution.
K2SO4 : K+ K2SO4 : SO4∧-2
1 = 2 1 = 1
0.450 = 2× 0.450 = 0.90 0.450 = 0.450×1 = 0.450
<em> Result:</em>
Conc. of potassium ion will be 0.90M
Coc. of sulphate ions will be 0.45 M
Answer:
group 17 the halogen.as it has 7 electron in its outermost ring
what did you eat for breakfast?
I can't help you otherwise