Answer:
The ability to be maintained at a certain rate or level
Explanation:
Answer:
d) V = 91.3 L
Explanation:
Given data:
Volume of nitrogen = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Number of atoms of nitrogen = 2.454×10²⁴ atoms
Solution:
First of all we will calculate the number of moles of nitrogen by using Avogadro number.
1 mole = 6.022×10²³ atoms
2.454×10²⁴ atoms × 1 mol / 6.022×10²³ atoms
0.407×10¹ mol
4.07 mol
Volume of nitrogen:
PV = nRT
1 atm × V = 4.07 mol ×0.0821 atm.L /mol.K ×273.15 K
V = 91.3 atm.L /1 atm
V = 91.3 L
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Explanation:
Scientifically speaking, metals are naturally occurring chemical elements that are typically hard, lustrous, and good conductors of both heat and electricity. Examples include iron, gold, silver, copper, zinc, nickel, etc., but also elements we don't normally think of as metals.
Answer:
Aircraft cabins are therefore pressurized to maintained a similar pressure as that experienced at sea level to ensure normal breathing of passengers.
Explanation:
-Air becomes increasingly thinner with increasing altitudes.
-As such, oxygen becomes limited at higher altitudes and makes it difficult or almost impossible to breath a condition called hypoxia.
-Aircraft cabins are therefore pressurized to maintained a similar pressure as that experienced at sea level to ensure normal breathing of passengers.