Answer:
5.2 x 10⁻⁴ M.
Explanation:
- The relationship between gas pressure and the concentration of dissolved gas is given by Henry’s law:
<em>P = kC</em>
where P is the partial pressure of the gaseous solute above the solution.
k is a constant (Henry’s constant).
C is the concentration of the dissolved gas.
- At two different pressures, there is two different concentrations of dissolved gases and is expressed in a relation as:
<em>P₁C₂ = P₂C₁,</em>
P₁ = 1.0 atm, C₁ = 6.8 x 10⁻⁴ mol/L.
P₂ = 0.76 atm, C₂ = ??? mol/L.
<em>∴ C₂ = (P₂C₁)/P₁ =</em> (0.76 atm)(6.8 x 10⁻⁴ mol/L)/(1.0 atm) = <em>5.168 x 10⁻⁴ mol/L ≅ 5.2 x 10⁻⁴ M.</em>
Answer:
23.0733 L
Explanation:
The mass of hydrogen peroxide present in 125 g of 50% of hydrogen peroxide solution:

Mass = 62.5 g
Molar mass of
= 34 g/mol
The formula for the calculation of moles is shown below:
Thus, moles are:

Consider the given reaction as:

2 moles of hydrogen peroxide decomposes to give 1 mole of oxygen gas.
Also,
1 mole of hydrogen peroxide decomposes to give 1/2 mole of oxygen gas.
So,
1.8382 moles of hydrogen peroxide decomposes to give ![\frac {1}{2}\times 1.8382 mole of oxygen gas. Moles of oxygen gas produced = 0.9191 molGiven: Pressure = 746 torr The conversion of P(torr) to P(atm) is shown below: [tex]P(torr)=\frac {1}{760}\times P(atm)](https://tex.z-dn.net/?f=%5Cfrac%20%7B1%7D%7B2%7D%5Ctimes%201.8382%20mole%20of%20oxygen%20gas.%20%3C%2Fp%3E%3Cp%3EMoles%20of%20oxygen%20gas%20produced%20%3D%200.9191%20mol%3C%2Fp%3E%3Cp%3EGiven%3A%20%3C%2Fp%3E%3Cp%3EPressure%20%3D%20746%20torr%0A%3C%2Fp%3E%3Cp%3EThe%20conversion%20of%20P%28torr%29%20to%20P%28atm%29%20is%20shown%20below%3A%0A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%28torr%29%3D%5Cfrac%20%7B1%7D%7B760%7D%5Ctimes%20P%28atm%29)
So,
Pressure = 746 / 760 atm = 0.9816 atm
Temperature = 27 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (27 + 273.15) K = 300.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9816 atm × V = 0.9191 mol × 0.0821 L.atm/K.mol × 300.15 K
<u>⇒V = 23.0733 L</u>
Answer: Objects with like charge repel each other.
I think it is trace evidence since it is really small and hard to find.