Answer:
To tell if something is an acid or a base, you can use a chemical called an indicator. An indicator changes color when it encounters an acid or base. There are many different types of indicators, some that are liquids and others that are concentrated on little strips of "litmus" paper.
Explanation:
Answer:
1. The graph where x axis and y axis are present is called coordinate.
4. 18
Ionization energy refers to the amount of energy needed to remove an electron from an atom. Ionization energy decreases as we go down a group. Ionization energy increases from left to right across the periodic table.
<h3>What is ionization energy?</h3>
Ionization is the process by which ions are formed by the gain or loss of an electron from an atom or molecule.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Learn more about the ionization energy here:
brainly.com/question/14294648
#SPJ1
Answer:

Explanation:
1. Calculate the work
w = - pΔV = -4.3 atm × (43 L - 20 L) = -4.3 × 23 L·atm = -98.9 L·atm
2. Convert litre-atmospheres to joules

The negative sign indicates that the work was done against the surroundings.
This is a dilution that requires a certain volume from the stock solution to be diluted with distilled water to make a solution of HBr with a lesser concentration than the stock solution
Following dilution formula can be used
c1v1 = c2v2
Where c1 is concentration and v1 is the volume of the stock solution
c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting these values
10.0 M x v1 = 3.0 x 450.0 mL
v1 = 135.0 mL
A volume of 135.0 mL from HBr stock solution needs to be taken and diluted with distilled water upto 450.0 mL. The resulting solution will have a concentration of 3.0 M