Complete Question
Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of the moon’s surface, making what some consider the longest golf drive in history. Assume one of the golf balls was struck with initial velocity v0 = 32.75 m/s at an angle θ = 32° above the horizontal. The gravitational acceleration on the moon’s surface is approximately 1/6 that on the earth’s surface. Use a Cartesian coordinate system with the origin at the ball's initial position.
Randomized Variables
vo 32.75 m/s
theta 32 degrees
What horizontal distance, R in meters, did this golf ball travel before returning to the lunar surface?
Answer:
The horizontal distance is
Explanation:
From the question we are told that
The initial velocity is 
The angle is 
The gravitational acceleration of the moon is 
Generally the distance traveled is mathematically represented as

=> 
=>
<span>Compressional stress</span>
Answer:

Explanation:
The resistance of a wire is given by:

where
is the resistivity of the material
L is the length of the wire
A is the cross-sectional area of the wire
1) The first wire has length L and cross-sectional area A. So, its resistance is:

2) The second wire has length twice the first one: 2L, and same thickness, A. So its resistance is

3) The third wire has length L (as the first one), but twice cross sectional area, 2A. So, its resistance is

By comparing the three expressions, we find

So, this is the ranking of the wire from most current (least resistance) to least current (most resistance).
Answer:
The equation that will express this result os
h = 0 = vy t - 1/2 g t^2 so the net height traveled by the bullet is zero
vy t = 1/2 g t^2
vy = 1/2 g t
vy = 1/2 * 9.8 * t you could use -9.8 to indicate vy and g are in different directions
tx = sx/ vx = 46.4 / 471 = .0985 sec time to travel up and down to original height
th = .0985 / 2 = .0493 sec time to reach maximum height
vy = g ty = 9.8 * .0493 sec = .483 m/s initial vertical speed
Sy = vy t - 1/2 g t^2 = .483 * .0493 - 1.2 9.8 (.0493^^2)
Sy = .0238 - 4.9 ( .0493)^2 = .0238 - .0119 = .0119 m
Height to which bullet will rise - if the gun is aimed at this height then in .0985 seconds the bullet will fall to zero height
Check: .483 / 9.8 = .0493 time to reach zero vertical speed
total travel time = 2 * .0493 = .0986 sec
471 * .0986 = 46.4 m total distance traveled by bullet
Answer:
2.0 s, 200 m
Explanation:
Time to hit the ground depends only on height. Since the plane is at the same height, the weight lands at the same time as before, 2.0 s.
Since the plane is going twice as fast, the weight will travel twice as far (ignoring air resistance). So it will travel a horizontal distance of 200 m.