1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna71 [15]
3 years ago
11

A scene in a movie has a stuntman falling through a floor onto a bed in the room below. The plan is to have the actor fall on hi

s back, but you have been hired to investigate the safety of this stunt. When you examine the mattress, you see that it effectively has a spring constant of 65144 N/m for the area likely to be impacted by the stuntman, but cannot depress more than 12.89 cm without injuring him. To approach this problem, consider a simplified version of the situation. A mass falls through a height of 3.32 m before landing on a spring of force constant 65144 N/m. Calculate the maximum mass that can fall on the mattress without exceeding the maximum compression distance.
=______________________ kg
Physics
1 answer:
tekilochka [14]3 years ago
6 0

Answer:

The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg

Explanation:

Hi there!

Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:

PE = EPE

m · g · h = 1/2 k · x²

Where:

m = mass.

g = acceleration due to gravity.

h = height.

k = spring constant.

x = compression distance

The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:

EPE =1/2 k · x²

EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J

Then, using the equation of gravitational potential energy:

PE = m · g · h =  541.2 J

m =  541.2 J/ g · h

m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)

m = 16.6 kg

The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.

You might be interested in
What would make oppositely charged objects attract each other more? increasing the positive charge of the positively charged obj
kykrilka [37]

Answer:

A.

Explanation:

I did the test :D

3 0
2 years ago
Read 2 more answers
Compare and contrast offensive and defensive roles in team sports.
strojnjashka [21]
In the offensive role, the players try to get a goal.
In the defensive roll, The players try to protect the goal
Hoped this helped a little :)

4 0
2 years ago
Read 2 more answers
A power plant produces 1000 MW to suply a city 40Km away.Current flows from the power plant on a single wire of resistance0.050
Westkost [7]

Answer:

The current in wire resistance 2Ω

a). 8696 A

b). fraction power 15.1% a 115kV

Explanation:

Resistance

R=0.05Ω/Km*40km

R=2Ω

P=1000 MW

a).

P=V*I\\I=\frac{P}{V}=\frac{1000x10^{6}W}{115x10^{3}k }  =8696.65A

Using law ohm

b).

V=I*R\\I=\frac{V}{R}

P=I*I*R\\P=I^{2} *R\\P=8696.65^{2}*2\\P=151.228 x10^{6}  W

e=\frac{151.228x10^{6} }{1000x10^{6} }*100= 15.12%

8 0
3 years ago
6. 498.82 mg comverted to kg​
Ivanshal [37]

Answer:

0.00049882 kg

........................

6 0
3 years ago
Read 2 more answers
A gun is fired parallel to the ground. at the same instant a bullet of equal size and mass next to the muzzle is released and dr
jolli1 [7]

Both hits the ground <u>at the same time</u> because they have <u>same vertical acceleration</u>

<u></u>

<h3>What is vertical  acceleration?</h3>

A vertical acceleration is typically one for which the direction of the vector is vertically upward, usually aligned with and opposite to the gravity vector. But this is a descriptive term, not a rigorous or technical term. A car may accelerate along a road and that would generally be assumed to be a horizontal.

The vector perpendicular to this direction, as perhaps a suspension motion over a bump, would be described as vertical even if it is not strictly vertical.

Note that acceleration is defined as the rate of change of the velocity vector. But the gravitation vector, ‘g’, generally vertically downward, is often denoted by what acceleration a mass in free fall (absent air resistance) would experience, i.e. the relationship between mass and weight.

Learn more about vertical acceleration

brainly.com/question/19528199

#SPJ4

3 0
1 year ago
Other questions:
  • After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of r
    8·1 answer
  • What makes astronomers think that impact rates for the Moon must have been higher earlier than 3.8 billion years ago?
    15·1 answer
  • When two adjacent lights blink on and off in quick succession, we perceive a single light moving back and forth between them. th
    9·1 answer
  • A book with a mass of 1kg is dropped from a height of 3m . What is the potential energy of th book when it reaches the floor?​
    15·1 answer
  • It is less expensive to mine minerals from deep-water deposits than from continental shelf deposits. Please select the best answ
    5·2 answers
  • Honey bees can acquire a small net charge on the order of 1 pC as they fly through the air and interact with plants. Estimate th
    10·1 answer
  • Which of the following objects is in dynamic equilibrium? A - a man standing in one place without moving B- a bicycle accelerati
    9·2 answers
  • a car acceleration from rest to 90km/h in 10 seconds. what is its acceleration in meter per second square?​
    5·1 answer
  • Olympic gold medalist Michael Johnson runs one time around the track 400 meters in 38 seconds what is his displacement what is h
    13·1 answer
  • HELP DUE 3 MINUTESsssss
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!