Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec
Based on this electric field diagram, the statement which best compares the charge of A with B is "A is negatively charged and B is positively charged. The charge on A is greater than that on B".
<u>Answer:</u> Option A
<u>Explanation:</u>
The charge is quantized represented as elementary charge, about 1.602×10−19 coulombs. Their are two kinds of electric charging: positive and negative (usually transported, separately, by protons and electrons). Like charges repel each other, while attraction occurs among unlike charges. An entity without net charge is considered neutral. If a piece of matter comprises more electrons than protons, it has a negative charge, when there are fewer, it'll have a positive charge and when there are equal amounts, this will be neutral.
Answer:
6.8 m/s2
Explanation:
Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is
W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N
For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of
a = F/m = 13.6 / 2 = 6.8 m/s2
So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail
Answer:
c) lifespan
Explanation:
hope it's helpful for you ☺️
The kinetic energy of an object is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = speed
Given values:
KE = 0.161J, v = 2.33m/s
Plug in and solve for m:
0.161 = 0.5m(2.33)²
m = 0.059kg