C, erosion. Erosion is the natural process of breaking down natural products through wind, or similar natural resources.
A flask with a volume of 125.0 mL contains air with a density of 1.298 g/L. what is the mass of the air contained in the flask<span>The given are: </span>
<span><span>1. </span>Mass = ?</span><span><span /></span>
<span><span>2. </span>Density = 1298 g/L</span>
3. Volume = 125mL to L
a. 125 ml x 0.001l/1ml = 0.125 L
<span>Formula and derivation: </span><span><span>
1. </span>density = mass / volume</span> <span><span>
2. mass </span>= density / volume</span>
<span>Solution for the problem: </span><span><span>
1. mass = </span></span> <span> 1298 g/L / 0.125 L = 10384g
</span>
Answer:
0.0738 M
Explanation:
HNO3 +LiOH = LiNO3 + H2O
Number of moles HNO3 = number of moles LiOH
M(HNO3)*V(HNO3) = M(LiOH)*M(LiOH)
M(HNO3)*50.0mL = 0.100M*36.90 mL
M(HNO3) = 0.100*36.90/50.0 M = 0.0738 M
I believe it is 65.37.
Let me know if this is correct. Also good luck!!
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:
