Hypothesis
Therefore the last step in the scientific method is proposing a hypothesis or obtaining a conclusion
Answer: Option A) 83.9g
Explanation:
KCl is the chemical formula of potassium chloride.
Given that,
Amount of moles of KCl (n) = ?
Volume of KCl solution (v) = 0.75L
Concentration of KCl solution (c) = 1.5M
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
make n the subject formula
n = c x v
n = 1.5M x 0.75L
n = 1.125 mole
Now given that,
Amount of moles of KCl (n) = 1.125
Mass of KCl in grams = ?
For molar mass of KCl, use the molar masses of:
Potassium, K = 39g;
Chlorine,Cl = 35.5g
KCl = (39g + 35.5g)
= 74.5g/mol
Since, amount of moles = mass in grams / molar mass
1.125 mole = m / 74.5g/mol
m = 1.125 mole x 74.5g/mol
m = 83.81g
Thus, 83.9 grams of KCl are needed to prepare 0.750 L of a 1.50 M solution in water
Answer:
I'm guessing where it is located in the earth for example if a part of a biome is closer to the equator it will be more warm and tropical the further from the equator it will be colder and less tropical.
Explanation:
Answer:
Since with LiBr no precipitation takes place. So, Ag+ is absent
When we add Li2SO4 to it, precipitation takes place.
Ca2+(aq) + SO42-(aq) ----> CaSO4(s) ...Precipitate
Thus, Ca2+ is present.
When Li3PO4 is added, again precipitation takes place.Reaction is:
Co2+(aq) + PO43-(aq)---->Co3(PO4)2(s) ... Precipitate
A. Ca2+ and Co2+ are present in solution
B. Ca2+(aq) + SO42-(aq) ----> CaSO4(s)
C. 3Co2+(aq) + 2PO43-(aq)---->Co3(PO4)2(s)
The new volume of the oxygen would be 17.4 L. I think it's 17.4 L but I don't know. I hope it was helpful.