Answer:
- Volume = <u>2.0 liter</u> of 1.5 M solution of KOH
Explanation:
<u>1) Data:</u>
a) Solution: KOH
b) M = 1.5 M
c) n = 3.0 mol
d) V = ?
<u>2) Formula:</u>
Molarity is a unit of concentration, defined as number of moles of solute per liter of solution:
<u>3) Calculations:</u>
- Solve for n: M = n / V ⇒ V = n / M
- Substitute values: V = 3.0 mol / 1.5 M = 2.0 liter
You must use 2 significant figures in your answer: <u>2.0 liter.</u>
Answer:
A) 0 °C, because it is the melting point of ice.
Explanation:
- Point B is the temperature at which the water is converted from ice (solid phase) to liquid water (liquid phase), which is the melting transition of water.
Melting point of the water is at 0.0°C.
<em>So, the right choice is: A) 0 °C, because it is the melting point of ice. </em>
<em></em>
Q1. Chemical, Physical, Physical, Physical
(l am not 100% sure about the 4th answer)
Q2. All of the above
Hey there!:
Molar mass:
CHCl3 = ( 12.01 * 1 )+ (1.008 * 1 ) + ( 35.45 * 3 ) => 119.37 g/mol
C% = ( atomic mass C / molar mass CHCl3 ) * 100
For C :
C % = (12.01 / 119.37 ) * 100
C% = ( 0.1006 * 100 )
C% = 10.06 %
For H :
H% = ( atomic mass H / molar mass CHCl3 ) * 100
H% = ( 1.008 / 119.37 ) * 100
H% = 0.008444 * 100
H% = 0.8444 %
For Cl :
Cl % ( molar mass Cl3 / molar mass CHCl3 ):
Cl% = ( 3 * 35.45 / 119.37 ) * 100
Cl% = ( 106.35 / 119.37 ) * 100
Cl% = 0.8909 * 100
Cl% = 89.9%
Hope that helps!