Three peaks corresponding to Cl+2 will be recorded. The peaks are for isotope 35, both 35 and 37 and for isotope 37. Mass spectrometer has the ability to detect and separate isotopes, even those differing by a single atomic mass unit. When chlorine isotopes are analysed by mass spectrometer, either peak M or M+2 can be obtained. The intensity ratio in the isotope pattern depends on the natural abundance of the isotopes.
The partial atmospheric pressure (atm) of hydrogen in the mixture is 0.59 atm.
<h3>How do we calculate the partial pressure of gas?</h3>
Partial pressure of particular gas will be calculated as:
p = nP, where
- P = total pressure = 748 mmHg
- n is the mole fraction which can be calculated as:
- n = moles of gas / total moles of gas
Moles will be calculated as:
- n = W/M, where
- W = given mass
- M = molar mass
Moles of Hydrogen gas = 2.02g / 2.014g/mol = 1 mole
Moles of Chlorine gas = 35.90g / 70.9g/mol = 0.5 mole
Mole fraction of hydrogen = 1 / (1+0.5) = 0.6
Partial pressure of hydrogen = (0.6)(748) = 448.8 mmHg = 0.59 atm
Hence, required partial atmospheric pressure of hydrogen is 0.59 atm.
To know more about partial pressure, visit the below link:
brainly.com/question/15302032
#SPJ1
Spices like ginger are significantly used in preservatives because they have antimicrobial properties in their chemical compounds. They also have antioxidant properties that allow food to be preserved.
Answer:
Distillation.
Explanation:
If we are heating a mixture of two miscible liquids and collecting the vapors it means we are separating the two mixtures from each other based on their boiling point differences.
This technique of separation of two liquids based on the difference in boiling point is known as Distillation.
Alcohol will evaporate easily as compared to water as water has stronger influence of hydrogen bond making the inter-molecular forces stronger.
Answer:
0.045 L or 45 mL
Explanation:
Moles = Mass/M.Mass
Moles = 10 g / 109.94 g/mol
Moles = 0.09 moles
Also,
Molarity = Moles / Vol in L
Or,
Vol in L = Moles / Molarity
Vol in L = 0.09 mol / 2 mol/L
Vol in L = 0.045 L