Answer:

Explanation:
Hello,
In this case, since the work done at constant pressure as in isobaric process is computed by:

Thus, given the pressure, initial volume and work, the final volume is:

Whereas the pressure must be expressed in Pa as the work is given in J (Pa*m³):

And the volumes in m³:

Thus, the final volume turns out:

Best regards.
Question: <em>What is the hybridization of each carbon and oxygen atoms in vitamin C?</em>
Answer:
1. To decide the hybridization of a carbon, look at how many atoms are attached to it (including the hydrogens that may be unwritten). If there are 4 total atoms attached (all with single bonds), the carbon must have sp3 orbitals (there are 4 of them). If 3, then sp2. If 2, then sp. Carbon can't be sp3d or sp3d2 hybridized because carbon is in the 2nd period of the periodic table and doesn't possess any d orbitals to hybridize.
2. Not sure what this question means. Did you mean to type just C-C bonds? If so, just count the number of bonds between 2 carbon atoms!
3. Use VSEPR. The bond angle is as great as possible, based on the repulsion of the valence electron pairs (both bonded and lone). This is also related to hybridization. sp3 hybrid orbitals are 109.5 degress apart, sp2 is 120, sp is 180.
4. See part 1. Determine the hybridization of both C4 and C5. The overlap of an orbital from each carbon is what forms the sigma bond.
Answer:
they could collide 241.66 molec / in² by increasing the volume to 40.2L
Explanation:
ideal gas:
<u>Boyle Law</u>: at constant temperature the pressure of a gas varies inversely with the volume
- V1 * P1 = V2 * P2
- P = F / A
∴ V1 = 6.70 L;
∴ P1 = 1450 molec / in²
∴ V2 = 40.2 L
⇒ P2 = (( 6.70 L ) * ( 1450 molec/in²)) / 40.2 L
⇒ P2 = 241.66 molec/in²
Answer:
because air pressure crushes masses and or grams that have a stronger gravitaional
pull
Each orbit surrounding an atom is allowed A LIMITED NUMBER OF ELECTRONS.
The number of orbit that an atom has is determined by its atomic number, the higher the atomic number the higher the number of orbit in the atom and each orbit has different energy level. Each orbit can only take fixed number of electron. The first shell can only take two electrons while the subsequent shells can only take eight electrons. When an orbit has taken the highest number of electron possible, the remaining electrons are moved to the next shell.