Because the attractive forces are governed by the relationship

we know that the bond strength between the ions of opposite charge depends on the charges on the ions and the distance between the centers of the ions when they pack to form a crystal.
In the example of MgO (magnesium oxide) and NaCl, MgO has a much higher lattice energy because the ions are +2 and -2, instead of +1 and -1.
But your problem doesn't deal with the magnitude of the charge; it concerns the ionic radii.
Smaller ions are packed closer together, meaning the attractive forces are working across a smaller distance and are thus stronger. We know based on periodic trends that as you move down a group, the ion radius increases. Therefore, the lattice energy decreases.
Both Mg and Ca are alkaline earth metals (group II on the periodic table). But Mg is one row above Ca, meaning its ionic radius is smaller. Therefore, its lattice energy is larger.
I'm pretty sure it's a chemical reaction.
The environment affects natural selection. Speices need to adapt to changes in environmnet. The weaker organisms which fail to adapt to environment perish while the stronger ones who adapt to the environment survive. This is how environment affects natural selection.
The equation of the neutralization reaction is:
HOC(CO₂H)(CH₂CO₂H)₂ + Na₂CO₃ ----> HOC(CO₂Na)(CH₂CO₂Na)₂ + H₂O
<h3>What is the acid in lemon juice?</h3>
The main acid in lemon juice is citric acid.
Citric acid is a tricarboxylic acid and will react with baking soda to form a salt and water.
The equation of the neutralization reaction is shown below:
HOC(CO₂H)(CH₂CO₂H)₂ + Na₂CO₃ ----> HOC(CO₂Na)(CH₂CO₂Na)₂ + H₂O
In conclusion, the neutralization of citric acid in lemon juice produces a salt and water.
Learn more about neutralization reaction at: brainly.com/question/15042730
#SPJ1
Answer : The rate law for formation of NOBr based on this mechanism is, ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)
Explanation :
The overall reaction is:

Rate law = ![k[Br_2][NO]^2](https://tex.z-dn.net/?f=k%5BBr_2%5D%5BNO%5D%5E2)
The first step of the overall reaction is:


Rate law 1 = ![k_1[Br_2][NO]](https://tex.z-dn.net/?f=k_1%5BBr_2%5D%5BNO%5D)
Rate law 2 = ![k_1^-[NOBr_2]](https://tex.z-dn.net/?f=k_1%5E-%5BNOBr_2%5D)
The second step of the overall reaction is:

Rate law 3 = ![k_2[NOBr_2][NO]](https://tex.z-dn.net/?f=k_2%5BNOBr_2%5D%5BNO%5D)
Now rate law of overall reaction can be obtained as follows.
We are multiplying rate law 1 and rate law 3 and dividing by rate law 2, we get:
Rate law = ![\frac{[k_1[Br_2][NO]]\times [k_2[NOBr_2][NO]]}{[k_1^-[NOBr_2]]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bk_1%5BBr_2%5D%5BNO%5D%5D%5Ctimes%20%5Bk_2%5BNOBr_2%5D%5BNO%5D%5D%7D%7B%5Bk_1%5E-%5BNOBr_2%5D%5D%7D)
Rate law = ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)
Rate law = ![k[Br_2][NO]^2](https://tex.z-dn.net/?f=k%5BBr_2%5D%5BNO%5D%5E2)
The rate law for formation of NOBr based on this mechanism is, ![\frac{k_1\times k_2}{k_1^-}[Br_2][NO]^2](https://tex.z-dn.net/?f=%5Cfrac%7Bk_1%5Ctimes%20k_2%7D%7Bk_1%5E-%7D%5BBr_2%5D%5BNO%5D%5E2)