The concept we are looking for here is electronegativity. This concept is a measure of how strong an atom or element can attract a pair, that is bonding, of electrons to itself.
Fluorine is the element or atom of the greatest electronegativity. Electronegativity would increase as we move left to right of the periodic table.
Answer:
See explanation
Explanation:
Before the advent of the wave-particle duality theory proposed by Louis de Broglie, there was a sharp distinction between mater and waves.
However, Louis de Broglie introduced the idea that mater could display wave-like properties. Erwin Schrödinger developed this idea into what is now known as the wave mechanical model of the atom.
In this model, electrons are regarded as waves. We can only determine the probability of finding the electron within certain high probability regions within the atom called orbitals.
This idea has been the longest surviving atomic model and has greatly increased our understanding of atoms.
It has the most mass. but the electron cloud takes up the most space.
Atomic mass Cu = 63.546 a.m.u
63.546 g ---------------- 6.02x10²³ atoms
22 g --------------------- ??
22 x (6.02x10²³ ) / 63.546 => 2.08x10²³ atoms
hope this helps!
<u>Answer:</u> The freezing point of solution is 2.6°C
<u>Explanation:</u>
To calculate the depression in freezing point, we use the equation:

Or,

where,
= 
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point depression constant = 5.12 K/m = 5.12 °C/m
= Given mass of solute (anthracene) = 7.99 g
= Molar mass of solute (anthracene) = 178.23 g/mol
= Mass of solvent (benzene) = 79 g
Putting values in above equation, we get:

Hence, the freezing point of solution is 2.6°C