
Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
To increase the rate of dissolving you can stir the concentration, heat the mixture, or grind the solute.
The statement that best explains the type of chemical reaction represented by Maya's picture is that it is neither a synthesis reaction nor a decomposition reaction because two reactants form two products. That is option B.
<h3>What is a chemical reaction?</h3>
A chemical reaction is the combination of two elements to yield a new product through the formation of bonds.
A chemical reaction is said to be a synthesis reaction when when two different atoms or molecules interact to form a different molecule or compound.
A chemical reaction is said to be a decomposition reaction when one reactant breaks down into two or more products.
Therefore, from the picture, the chemical reaction is neither a synthesis reaction nor a decomposition reaction because two reactants form two products.
Learn more about chemical reaction here:
brainly.com/question/16416932
#SPJ1
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)(
-
).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)(
-
)
= 0.2(
)
f =
= 150
For air (nair = 1):
= (1.5 - 1)(
-
)
f =
= 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.
<span>The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. the heat increased the temperature of the air in the room, which means an increase in the air's molecular kinetic energy.
When heat leaves a system, that energy is transferred to its surroundings. Since the air is the surroundings, the heat is transferred to the air increasing the temperature. This causes an increase in the individual air molecules' energy.</span>