Explanation:
A metal such as copper is a <u>conductor</u> because it provides a pathway for electric charges to move easily. A material such as rubber is an <u>insulator</u> because it <u>resists</u> the flow of electric charges. A material that partially conducts electric current is a <u>semiconductor</u>. These materials include <u>group 3 and group 5</u> elements.
Answer:
Explanation:The work done is twice as great for block B because it is moved twice the ... Equal forces are used to move blocks A and B across the floor. ... Does the normal force of the floor pushing upward on the block do any work? ... Suppose that the mass is halfway between one of the extreme points of its motion and the center point.
Answer:
a) 1.092 m/s
b) 0.33 m
c) 0.25 m
Explanation:
To start with, from the formula of wave, we know that
v = f λ, where
v = velocity of wave
f = frequency of the wave
λ = wavelength of the wave
Again, on another hand, we know that
T = 1/f, where T = period of the wave
From the question, we are given that
t = 2.7 s
d = 0.66 m
λ = 5.9 m
Period, T = 2 * t
Period, T = 2 * 2.7
Period, T = 5.4 s
If T = 1/f, then f = 1/T, thus
Frequency, f = 1/5.4
Frequency, f = 0.185 hz
Remember, v = f λ
v = 0.185 * 5.9
v = 1.092 m/s
Amplitude, A = d/2
Amplitude, A = 0.66/2
Amplitude, A = 0.33 m
If the other distance travelled by the boat is 0.5, then Amplitude is
A = 0.5/2
A = 0.25 m
1). Contrary to what we think we see around us every day, NO force is required
to keep an object moving at a constant speed in a straight line.
Force is required to <u>change</u> the object's motion . . . speed it up, slow it down,
or change the direction in which it's moving.
2.a). The motion of the box changes from not moving to moving.
The forces on it are unbalanced.
2.b). The motion of the box doesn't change. It goes from not moving to
still not moving. The forces on it are balanced.
2.c). The motion of the box changes from moving to moving slower.
After you stop pushing, the forces on it are unbalanced.