1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
3 years ago
10

During an auto accident, the vehicle’s air bags deploy and slow down the passengers more gently than if they had hit the windshi

eld or steering wheel. According to safety standards, air bags produce a maximum acceleration of 60 g that lasts for only 36 ms (or less). How far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60 g?
Physics
2 answers:
Phantasy [73]3 years ago
8 0

Answer:

A person travels 39 cm in coming to a complete stop in 36 ms at a constant acceleration of 60 g.

Explanation:

Hi there!

The equation of position of an object moving in a straight line at constant acceleration is the following:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

So, let's see how much distance the person moves inside the car. Let's imagine that the person is initially at rest and suddenly is accelerated at 60 g (60 · 10 m/s² = 600 m/s²). In this case, x0 and v0 = 0 and the traveled distance will be:

x = 1/2 · 600 m/s² · (0.036)²

x = 0.39 m or 39 cm

Here, we have calculated the distance traveled by a person accelerated at 60 g from rest in 36 ms. Notice that the distance is the same if we calculate the traveled distance of a person that is brought to rest in 36 ms with an acceleration of 60 g.

A person travels 39 cm in coming to a complete stop in 36 ms at a constant acceleration of 60 g.

Allushta [10]3 years ago
5 0

Answer:

d = 0.38 m

Explanation:

As we know that the person due to the airbag action, comes to a complete stop, in 36 msec or less, and during this time, is decelerated at a constant rate of 60 g, we can find the initial velocity (when airbag starts to work), as follows:

vf = v₀ -a*t  

If vf = 0, we can solve for v₀:

v₀ = a*t = 60*9.8 m/s²*36*10⁻³s = 21.2 m/s

With the values of v₀, a and t, we can find Δx, applying any kinematic equation that relates all of some of these parameters with the displacement.

Just for simplicity, we can use the following equation:

vf^{2} -vo^{2} = 2*a*d

where vf=0, v₀ =21.2 m/s and a= -588 m/s².

Solving for  d:

d = \frac{-vo^{2}}{2*a} = \frac{(21.2m/s)^{2} }{2*588 m/s2} =0.38 m

⇒ d = 0.38 m

You might be interested in
A hypothesis is an assumption or a best guess that
rusak2 [61]

Definition: a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.
6 0
3 years ago
Read 2 more answers
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
What is the magnitude of the kinetic frictional force
Effectus [21]

The magnitude of the kinetic friction force, ƒk, on an object is. Where μk is called the kinetic friction coefficient and |FN| is the magnitude of the normal force of the surface on the sliding object. The kinetic friction coefficient is entirely determined by the materials of the sliding surfaces. hope it helps

4 0
3 years ago
An object has a weight of 500 on earth what is the mass of this object
erastova [34]

550! OBVY! lol! ope this helps1

7 0
3 years ago
. Friction is a rubbing force that ___________ a spinning yo-yo.
Advocard [28]
The yo-yo speeds up when you rub it
3 0
2 years ago
Read 2 more answers
Other questions:
  • The coriolis effect causes winds to move in a ______ pattern.
    12·2 answers
  • Imagine a 10kg block moving with a velocity of 20m/s to the left.
    7·1 answer
  • An 800 N box is pushed across a level floor for a distance of 5.0 m with a force of 400 N. How much work was done on this box.
    12·1 answer
  • HELP ME PLS &gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;
    6·1 answer
  • Water from a fire hose is directed horizontally against a wall at a rate of 50.0 kg/s and aspeed of 42.0 m/s. Calculate the forc
    12·2 answers
  • Two balls are kicked with the same initial speeds. Ball A was kicked at the angle 20° above horizontal and ball B was kicked at
    15·1 answer
  • How much work is done lifting a 5 kg ball from a height of 2 m to a height of 6 m? (Use 10 m/s2 for the acceleration of gravity.
    7·1 answer
  • What is the angle between an electric field and a magnetic field? <br><br> Answer: 90 degrees
    9·1 answer
  • An object has 22.4 kg•m/s of
    13·2 answers
  • Find the distance from a point charge q=100nC where the field intensity is equal to E=6kN/C. please include description of the r
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!