We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
Answer:
Tangential speed=5.4 m/s
Radial acceleration=
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=
2.59 rev=
By using 
Angular velocity=
Distance from axis=r=0.329 m
Tangential speed=
Radial acceleration=
Radial acceleration=
Answer:48 V
Explanation:
Given
Three charged particle with charge



Electric Potential is given by

Distance of
from 



similarly 




Potential at
is

![V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]](https://tex.z-dn.net/?f=V_%7Bnet%7D%3Dk%5B%5Cfrac%7Bq_1%7D%7Bd_1%7D%2B%5Cfrac%7Bq_2%7D%7Bd_2%7D%2B%5Cfrac%7Bq_3%7D%7Bd_3%7D%5D)
![V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}](https://tex.z-dn.net/?f=V_%7Bnet%7D%3D9%5Ctimes%2010%5E9%5B%5Cfrac%7B50%7D%7B10%7D-%5Cfrac%7B80%7D%7B12%7D%2B%5Cfrac%7B70%7D%7B10%7D%5D%5Ctimes%2010%5E%7B-9%7D)


Solar power differ to fossil fuel power in that solar power is a much more optimal resource than fossil fuels
- Solar power; however provides much more energy than fossil fuel power
- Interestingly too, solar power resource can be used without releasing greenhouse gases compared to fossil fuels power
- Infact, solar energy is the most reliable
<h3>What is renewable energy?</h3>
Renewable energy simply refers to energy that is not depleted when used. An example of such is solar power.
So therefore, solar power differ to fossil fuel power in that solar power is a much more optimal resource than fossil fuels
Learn more about renewable energy:
brainly.com/question/79953
#SPJ1
Answer:
2.5 m/s
Explanation:
The velocity of the package relative to the ground = the velocity of the package relative to the helicopter + the velocity of the helicopter relative to the ground
v = 0 m/s + 2.5 m/s
v = 2.5 m/s
At the moment it is released, the package is rising at 2.5 m/s.