Answer:
Explanation:
Given that,
Current in wire is
I = 10A
And the current makes an angle of 30° with respect to the magnetic field
Then, θ = 30°
And the magnetic field is
B = 0.3 T
Length of the wire is
L = 0.5m
Force on the wire F?
The force on the wire in calculated using
F = iL × B
Where
The magnitude of the cross produce of L and B is
L × B = LB•Sinθ
Then, force becomes
F = iLB•Sinθ
F = 10 × 0.5 × 0.3 × Sin30
F = 0.75 N
The force on the wire is 0.75 Newton
The velocity, 50 m/s, has two components - vertical and horizontal velocities.
The vertical component = 50 sin 30 = 25 m/s
The horizontal component = 50 cos 30 = 43.3 m/s
(a) Let t be the time taken for the vertical component to reach its peak from initial velocity = 25 m/s to its final velocity = 0.
Using the linear motion equation v = u - gt
0 = 25 - 10t
t = 2.5 s
Time taken to go up and down = 5 s
Time to hit the ground = 5 s
(b) Horizontal distance dealt x = 43.3 * 5 = 216.5 m
This is not the correct answer, but explains the problem thoroughly.
Answer:
Part A) 3899 kPa
Part B) 392.33 kJ/kg
Part C) 0.523
Part D) 495 kPa
Explanation:
Part A
First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:
= 214.07 kJ/kg

= 621.2
The relative specific volume at state 2 is obtained from the compression ratio:

=
=621.2/ 8
= 77.65
From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):
= 673 K
= 491.2 kJ/kg
The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:
= 
= 95*8*673/300
= 1705 kPa
Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:

= 1241.2 kJ/kg
From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):
= 1539 K
= 6.588
The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:

= 3899 kPa
<u>Part B</u>
The relative specific volume at state 4 is obtained from the compression ratio:

= 52.7
From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:
=775 K
= 571.74 kJ/kg
The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:

<u>Part C </u>
The thermal efficiency is obtained from the work and the heat input:
η=
=0.523
<u>Part D </u>
The mean effective pressure is determined from its standard relation:
MEP=
=
=
=495 kPa
Answer:
Mass of the silver will be equal to 46.70 gram
Explanation:
We have given heat required to raise the temperature of silver by 24°C is 269 J , so 
Specific heat of silver = 0.240 J/gram°C
We have to find the mass of silver
We know that heat required is given by
, here m is mass, c is specific heat of silver and
is rise in temperature
So 
m = 46.70 gram
So mass of the silver will be equal to 46.70 gram
Answer:
(a) 110 rev/ min
(b) 5/6
Explanation:
As per the conservation of linear momentum,
L ( initial ) = L ( final )
I' ω' = ( I' + I'' ) ωf
I' is the rotational inertia of first wheel and I'' is the rotational inertia of second wheel which is at rest.
(a)
So, ωf = I' ω' / ( I' + I'' )
As I'' = 5I'
ωf = I' ω' / ( I' + 5I' )
ωf = ω'/ 6
now we know ω' = 660 rev / min
therefore ωf = 660/6
= 110 rev/ min
(b)
Initial kinetic energy will be K'
K' = I'ω'² / 2
and final K.E. will be K'' = ( I' + I'' )ωf² / 2
K'' = ( I' + 5I' ) (ω'/ 6)²/ 2
K'' = 6I' ω'²/72
K'' = I' ω'²/ 12
therefore the fraction lost is
ΔK/K' = ( K' - K'' ) / K'
= {( I'ω'² / 2) - (I' ω'²/ 12)} / ( I'ω'² / 2)
= 5/6