1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
5

Voltage sags and swells. The power quality of a transformer is measured by the quality of the voltage. Two causes of poor power

quality are "sags" and "swells." A sag is an unusual dip, and a swell is an unusual increase in the voltage level of a transformer. The power quality of transformers built in Turkey was investigated in Electrical Engineering (Vol. 95, 2013). For a sample of 103 transformers built for heavy industry, the mean number of sags per week was 353 and the mean number of swells per week was 184. Assume the standard deviation of the sag distribution is 30 sags per week and the standard deviation of the swell distribution is 25 swells per week. Suppose one of the transformers is randomly selected and found to have 400 sags and 100 swells in a week.
a. Find the z-score for the number of sags for this transformer. Interpret this value. 1.57

b. Find the z-score for the number of swells for this transformer. Interpret this value. -3.36
Mathematics
1 answer:
zysi [14]3 years ago
4 0

Answer:

a

 z-score = 1.57

b

 z-score_s = -3.36

Step-by-step explanation:

From the question we are told that

   The sample size is  n =  103  

    The  sample mean of  sag is  \= x_1 =  353

     The sample mean of swells is  \= x_2 =  184

    The standard deviation of  sag is  s_1  =  30

     The standard deviation of swells is  s_2  =  25

     The number of swell for a randomly selected transformer is  k  =  100

      The number of sag for a randomly selected transformer is  c  =  400

Generally the z-score for the number of swells is mathematically represented as

     z-score_s = \frac{ k - \= x_2}{s_2}

=>   z-score_s = \frac{ 100- 184}{25}

=>     z-score_s = -3.36

       

Generally the z-score for the number of sags is mathematically represented as    

      z-score = \frac{ c - \= x_1}{s_1}

     z-score = \frac{ 400 - 353}{30}

     z-score = 1.57

You might be interested in
U^2+u-72/3u-15 need to factor completely
lesya [120]
U^2+u-72/3u-15 

u^2+u-24u-15
 

u^2-23u-15
  
3 0
3 years ago
Solve the system of equations. 13x−y=90
SpyIntel [72]
Just squish the two equations into one equation and idk im just typing this because i apparently need a twenty character long answer

8 0
3 years ago
Helppp me thank youu!<br>BRAINIEST GIVEN!!
dimaraw [331]

Answer:

2?

Step-by-step explanation:

2 is the square root of 4 since 2×2=4

8 0
1 year ago
Read 2 more answers
Find the x- and y- intercepts of the line with the given equation <br><br> -6x+8y=-36
Likurg_2 [28]

Answer:

Y int at

(

0

,

3

2

)

X int at

(

3

,

0

)

Step-by-step explanation:

The line is easier to visualize when the equation is in slope-intercept form:

4

x

+

8

y

=

12

Divide each side by 4:

x

+

2

y

=

3

2

y

=

−

x

+

3

y

=

−

1

2

x

+

3

2

Y-intercept (plug in 0 for x):

y

=

−

1

2

(

0

)

+

3

2

y

=

3

2

X-intercept (plug in 0 for y):

0

=

−

1

2

x

+

3

2

−

3

2

=

−

1

2

x

x

=

3

5 0
3 years ago
Read 2 more answers
How do I evaluate this using trigonometric substitution?<br><br>∫dx/(81x^2+4)^2
Daniel [21]

Answer:

\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C

General Formulas and Concepts:

<u>Alg I</u>

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]: \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Pre-Calc</u>

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio: \displaystyle sec(\theta) = \frac{1}{cos(\theta)}

Trigonometric Identity: \displaystyle tan^2\theta + 1 = sec^2\theta

TI: \displaystyle sin(2x) = 2sin(x)cos(x)

TI: \displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}

<u>Calc</u>

Integration Rule [Reverse Power Rule]:                                                                \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:                                                             \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a² → x = atanθ

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}

<u>Step 2: Identify Sub Variables Pt.1</u>

Rewrite integral [factor expression]:

\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}

Identify u-trig sub:

\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to <em>x</em>):

\displaystyle tan\theta = \frac{9x}{2}  \rightarrow \theta = arctan(\frac{9x}{2})

<u>Step 3: Integrate Pt.1</u>

  1. [Int] Sub u-trig variables:                                                                                 \displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:                                                                           \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  3. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta
  4. [Int] Factor:                                                                                                      \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta
  5. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta
  6. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta
  8. [Int] Divide [ER - D]:                                                                                         \displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta
  9. [Int] Rewrite [TR]:                                                                                            \displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:                                                                          \displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]  

<u>Step 4: Identify Sub Variables Pt.2</u>

Determine u-sub for trig int:

u = 2θ

du = 2dθ

<u>Step 5: Integrate Pt.2</u>

  1. [Ints] Rewrite [Int Prop - MC]:                                                                       \displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:                                                                                                     \displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:                                                             \displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C]
  4. [Expression] Back Sub:                                                                                 \displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C]
  5. [Exp] Rewrite [TI]:                                                                                           \displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C]
  6. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C]
  7. [Exp] Back Sub:                                                                                             \displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C]

<u>Step 6: Triangle</u>

Find trig values:

\displaystyle tan\theta = \frac{9x}{2}

\displaystyle \theta = arctan(\frac{9x}{2})

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg <em>a</em> = 2

Leg <em>b</em> = 9x

Leg <em>c</em> = ?

  1. Sub variables [PT]:                                                                                         \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:                                                                                      \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:                                                  \displaystyle \sqrt{4 + 81x^2} = c
  4. Rewrite:                                                                                                           c = \sqrt{81x^2 + 4}

Substitute into trig ratios:

\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}

\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}

<u>Step 7: Integrate Pt.3</u>

  1. [Exp] Sub variables [TR]:                                                                               \displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C]
  2. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C]
  3. [Exp] Distribute:                                                                                             \displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C
3 0
2 years ago
Other questions:
  • To the nearest square unit what is the area of the regular octagon shown below?
    15·2 answers
  • Answer Now!! Which expression can be used to find the area, in square cm, of this parallelogram?
    10·1 answer
  • Eight subtracted from the square of a number
    15·1 answer
  • Evaluate mentally. Share your strategies.
    8·1 answer
  • Can someone help me solve for X?
    14·2 answers
  • Pls help with this i don't know haw to do it
    7·2 answers
  • Which equation is a related equation
    9·1 answer
  • Jose found a beach ball in his garage. He wants to know how much plastic was used to
    5·1 answer
  • Can you please help me
    6·1 answer
  • She needs 3/4 cup of water she needs 10 more servings what's the answer A 1/1/5 b 3/1/4 c 7/2/4 d 8/2/3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!