Explanation:
Let the speeds of father and son are
. The kinetic energies of father and son are
. The mass of father and son are 
(a) According to given conditions, 
And 
Kinetic energy of father is given by :
.............(1)
Kinetic energy of son is given by :
...........(2)
From equation (1), (2) we get :
..............(3)
If the speed of father is speed up by 1.5 m/s, so the ratio of kinetic energies is given by :


Using equation (3) in above equation, we get :

(b) Put the value of
in equation (3) as :

Hence, this is the required solution.
Answer:
you need at least two out of the three to get any aenser
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v