Answer:
If a solution conducts electricity, it is positive evidence that solute dissolved in solvent is electrolyte.
Answer:
The rate of the reaction increased by a factor of 1012.32
Explanation:
Applying Arrhenius equation
ln(k₂/k₁) = Ea/R(1/T₁ - 1/T₂)
where;
k₂/k₁ is the ratio of the rates which is the factor
Ea is the activation energy = 274 kJ/mol.
T₁ is the initial temperature = 231⁰C = 504 k
T₂ is the final temperature = 293⁰C = 566 k
R is gas constant = 8.314 J/Kmol
Substituting this values into the equation above;
ln(k₂/k₁) = 274000/8.314(1/504 - 1/566)
ln(k₂/k₁) = 32956.4589 (0.00198-0.00177)
ln(k₂/k₁) = 6.92
k₂/k₁ = exp(6.92)
k₂/k₁ = 1012.32
The rate of the reaction increased by 1012.32
The wick and the wax
Sorry if that was useless, I'm not sure how generalized you were being
Answer:
0.64 L
Explanation:
Recall that
n= CV where n=m/M
Hence:
m/M= CV
m= given mass of solute =152g
M= molar mass of solute
C= concentration of solute in molL-1 = 1.5M
V= volume of solute =????
Molar mass of potassium permanganate= 158.034 g/mol
Thus;
152 g/158.034 gmol-1= 1.5M × V
V= 0.96/1.5
V= 0.64 L
Answer:
Fe₂O₃ and C are reactants
Fe and CO₂ are products
Explanation:
Reactants:
Chemical species that are present on left side of chemical reaction equation are called reactants.
Product:
Chemical species that are present on right side of chemical reaction equation are called product.
Chemical equation:
2Fe₂O₃ + 3C → 4Fe + 3CO₂
In this reaction 2 mole of iron oxide is react with three moles of carbon and produced four moles of iron and three moles of carbon dioxide. There are equal numbers of atoms of all elements present on both side of chemical reaction so this reaction follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.