The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
Answer: Depends
Explanation:
Depends on how much the diver weighs.
Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k
Answer:
P = 4000 [Pa]
Explanation:
Pressure is defined as the relationship between Force and the area where the body rests.
The support area is equal to:
![A=50*20=1000[cm^{2} ]](https://tex.z-dn.net/?f=A%3D50%2A20%3D1000%5Bcm%5E%7B2%7D%20%5D)
But we must convert from square centimeters to square meters.
![1000[cm^{2}]*\frac{1^{2}m^{2} }{100^{2}m^{2} }=0.1[m^{2} ]](https://tex.z-dn.net/?f=1000%5Bcm%5E%7B2%7D%5D%2A%5Cfrac%7B1%5E%7B2%7Dm%5E%7B2%7D%20%20%7D%7B100%5E%7B2%7Dm%5E%7B2%7D%20%20%7D%3D0.1%5Bm%5E%7B2%7D%20%5D)
And the pressure is:
![P=\frac{F}{A} \\P=400/0.1\\P=4000[N/m^{2} ]or 4000[Pa]](https://tex.z-dn.net/?f=P%3D%5Cfrac%7BF%7D%7BA%7D%20%5C%5CP%3D400%2F0.1%5C%5CP%3D4000%5BN%2Fm%5E%7B2%7D%20%5Dor%204000%5BPa%5D)