Answer:
7.9060 m²
8.57 Volts
5.142×10⁻⁶ Joule
1.2×10⁻⁶ Coulomb
Explanation:
C = Capacitance between plates = 0.14 μF = 0.14×10⁻⁶ F
d = Distance between plates = 0.5 mm = 0.5×10⁻³ m
Q = Charge = 1.2 μC = 1.2×10⁻⁶ C
ε₀ = Permittivity = 8.854×10⁻¹² F/m
Capacitance

∴ Area of each plate is 7.9060 m²
Voltage

∴ Potential difference between the plates if the capacitor is charged to 1.2 μC is 8.57 Volts.
Energy stored
E=0.5CV²
⇒E = 0.5×0.14×10⁻⁶×8.57²
⇒E = 5.142×10⁻⁶ Joule
∴ Stored energy is 5.142×10⁻⁶ Joule
Charge
Q = CV
⇒Q = 0.14×10⁻⁶×8.57
⇒Q = 1.2×10⁻⁶ C
∴ Charge the capacitor carries before a spark occurs between the two plates is 1.2×10⁻⁶ Coulomb
Answer:
h = 36.4 cm
Explanation:
given,
spring constant = 2.5 x 10⁴ N/m
compressed distance = 11.2 cm = 0.112 m
mass of the child = 44 kg
maximum height = ?
by energy of conservation






h = 0.364 m
h = 36.4 cm
The momentum of two or more objects during collisions is not lost nor gained
Answer:
6 m/s
Explanation:
12m / 2s = 6 m/s
Hope that's the answer you seek.
Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation: