1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
3 years ago
14

Suppose you push a hockey puck of mass m across frictionless ice for a time \Delta t, starting from rest, giving thepuck speed v

after traveling distance d. If you repeat the experiment with a puck of mass2m,
1. How long will you have to push for the puck to reach the samespeed v?
t/ (delta t) = ?
2.How long will you have to push for the puck to travel the samedistance d?
t/ (delta t) = ?
Physics
1 answer:
bazaltina [42]3 years ago
7 0

Answer:

1. t_2 = 2t_1

2. t_2 = t_1\sqrt{2}

Explanation:

1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.

In Newton's 2nd law: F = ma

where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

a_1 = 2a_2

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

t = v / a_1

Now that acceleration is halved:

t = \frac{v}{2a_2}

\frac{v}{a_2} = 2t

You would need to push for twice amount of time t_2 = 2t_1

2. The distance traveled by the puck is as the following equation:

d = at^2

So if the acceleration is halved while maintaining the same d:

\frac{d_1}{d_2} = \frac{a_1t_1^2/2}{a_2t_2^2/2}

As d_1 = d_2, then d_1/d_2 = 1. Also a_1 = 2a_2

1 = \frac{2a_2t_1^2}{a_2t_2^2}

t_2^2 = 2t_1^2

t_2 = t_1\sqrt{2}\approx 1.14t_1

So t increased by 1.14

You might be interested in
The small metal cylinder has a mass of 0.20 kgkg, the coefficient of static friction between the cylinder and the turntable is 0
deff fn [24]

Answer:

velocity of the metal cylinder = 0.343 m/s

Explanation:

Force putting the metal cylinder is given by

F = mv²/r

But this force will balance the frictional force between the metal cylinder and the turntable

The frictional force is given by

μN = μ × mg = 0.08 × 0.2 × 9.81 = 0.15696 N

r = 0.15 m, m = 0.2 kg,

F = mv²/r = 0.2 v²/(0.15) = 1.3333 v²

1.3333 v² = 0.15696

v² = 0.117

v = 0.343 m/s

8 0
3 years ago
A switch can
oee [108]

Answer: a switch can do A, B and E

Explanation:

8 0
3 years ago
A ball is thrown vertically upwards with a velocity
zhuklara [117]

Answer:

Explanation:

The acceleration of gravity is 9.8m/s^2.

So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.

(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )

We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.

Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .

6 0
2 years ago
.A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in c
ohaa [14]

Answer:

 a = 1.1 10⁵ m / s²

Explanation:

This is a momentum exercise, where we use the relationship between momentum and momentum

          I = ∫ F dt = Δp

= p_f - p₀

as they indicate that the ball bounces at the same height, we can assume that the moment when it reaches the ground is equal to the moment when it bounces, but in the opposite direction

        F t = 2 (m v)

therefore the average force is

         F = 2 m v / t

where in general the mass of the ball unknown, the velocity of the ball can be calculated using the conservation of energy

starting point. Done the ball is released with zero initial velocity

        Em₀ = U = mgh

final point. Upon reaching the ground, just before the deformation begins

        Em_f = K = ½ m v²

energy is conserved in this system

        Em₀ = Em_f

        m g h = ½ m v²

        v = √ (2gh)

This is the velocity of the body when it reaches the ground, so the force remains

        F = 2m √(2gh)   /t

where the height of the person's chest is known and the time that the impact with the floor lasts must be estimated in general is of the order of milli seconds

knowing this force let's use Newton's second law

          F = m a

          a = F / m

 

          a = 2 √(2gh) / t

We can estimate the order of magnitude of this acceleration, assuming the person's chest height of h = 1.5 m and a collision time of t = 1 10⁻³ s

         a = 2 √ (2 9.8 1.5) / 10⁻³

         a = 1.1 10⁵ m / s²

6 0
3 years ago
Which is NOT true of the Big Bang Theory?
grigory [225]

Answer:

1. it explains what's happening im the universe now

3 0
3 years ago
Other questions:
  • A puppy weighing 3 kilograms races through the dog park. if she slows from a speed of 2 meters/second to 1 meter/second, what wi
    10·2 answers
  • Find the net force of the box and the acceleration. 10 points. Will give brainliest.
    15·1 answer
  • What is the color and frequency of the light that is produced? 1 nm = 1 x 10^-7 meters and the speed of light (c) = 3.0 x 10^8 m
    8·1 answer
  • Two projectiles are launched with the same initial speed from the same location, one at a 30° angle and the other at a 60° angle
    8·1 answer
  • A scuba diver measures an increase in pressure of around 10^5 Pa upon descending by 10 m, what is the change in force per square
    6·1 answer
  • What sensory capacities does an infant have?
    14·1 answer
  • If a body is accelerating m change the velocity of 2 metre per second square when it was acted by five hundred Newton of force t
    11·2 answers
  • Engineers design a system for heating the air in a house. They want the
    15·1 answer
  • a low tide and a high tide occur in the oceans two times each day. which factor has the greatest effect on the size of the tides
    11·1 answer
  • Please can someome answer this question with working out​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!