Answer:
Chemical energy to electrical energy
Explanation:
In nature, there are several types of energy.
In this example (a flashlight being turned on), we have a conversion of energy from chemical energy to electrical energy. In fact:
- Chemical energy is the energy stored in the chemical bonds of the molecules of the substances used inside the battery. When the chemical reaction inside the battery occurs, this energy is liberated, and it is used to "push" the electrons along the circuit connected to the battery
- Electric energy is the energy associated to the motion of the electrons along the circuit of the flashlight; it is the energy associated to an electric current.
Moreover, in the flashlight the electric energy is then converted into two more types of energy: light energy (since the bulb in the flashlight produces light) and heat energy (because the flashlight also produces heat, so thermal energy).
Answer:
Knowing that these metals are infact good conductors of electricity we can infer that metals are able to hold and conduct certain temperatures. Another thing we can infer is that these good conductors can be used in connection to transferring energy or electricity.
Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring