Answer:
Wien peak ( λmax ) is 107.40 nm
radius of super giant is 1.086 ×
m
Explanation:
given data
temperature 27 kK
power = 100000 times of Sun
Sun radius = 6.96 × 10^8 m
to find out
Wien peak ( λmax ) and radius of supergiant (r)
solution
we will apply here first wien law to find Wien peak that is
λmax = b / t
λmax = 2.9 ×
/ 27000 = 1.0740 ×
so Wien peak ( λmax ) is 107.40 nm
and
now we apply steafay law that is
P = σ × A ×
.........................1
and we know total power output 100000 time of Sun
so we say
4πr²s
= 100000 × 4πR²s
r² = 100000 × R²
/ 
put here value
r² = 100000 × (6.96×
)² ×
/ 
r² = 1.18132 ×
r = 1.086 ×
m
so radius of super giant is 1.086 ×
m
Answer:
C
Explanation:
Action and Reaction forces are equal in the opposite direction.
As the plastic sphere is charged, therefore it experience an electric force when placed in an electric fields and also experiences gravitational force acts downward so the electric force must act upward.
Let
is electric force and
is gravitational force.
If these forces are balanced, therefore
or 
Given,
and
.
Substituting these values in above equation we get,

Thus, the magnitude of electric field is
.
As the charge is negative, the electric field at the location of the plastic sphere must be pointing downward.
Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
We classify the elements as follows:
<span>Cd2+ = Diamagnetic
Mn2+ = Paramagnetic
Kr = Diamagnetic
Zr = Paramagnetic
Diamagnetic when </span><span>all electrons are paired which means that in an orbital an electron spins clockwise and another spins anticlockwise while paramagnetic is the opposite.</span><span>
</span>