Answer:
C the Law of Superposition
Explanation:
Basically the law of Superposition is applied in this regard. The law states that "the oldest layer is on the bottom and the youngest layer is on top".
When we find fossils at a particular depth we can relatively date a rock based on the strata we find them. A fossil in place in bottom beds will be older than the one in the topmost layer. Fossils also succeed one another in a definite pattern according to the principle of fossil and fauna succession.
Force can alter its direction,slow or stop it you could say it can change its velocity
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.