The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
4.The other light bulb will stay on and glow brightly.
Answer:
Knowing that boron has an atomic mass of 10,811 means that all boron isotopes on average weigh 10,811 u.
Explanation:
The atomic mass of an atom is the mass of the atom measured in u (unified atomic mass unit), although we can also express it as Da (Dalton's unit)
Atomic mass refers to the average mass that all isotopes of that element have.
When we speak of isotopes we are referring to the element itself but with a different number of neutrons, which makes it modify its mass number.