Answer:
A
Explanation:
because in the moving object there's a certain energy applied
Answer:
A. reintroducing an animal to the ecosystem
Explanation:
As generally, all know that for restoring an ecosystem naturally, it requires reintroduction of an animal to the ecosystem. As though it helps in reimposing the ecosystem back, and also helps to improve our ecosystem in natural surroundings, natural terrain, and population density. Basically reintroducing an animal is also required for the balancing of the ecosystem. As everything requires a properly balanced nature.
Answer:
The range of powers is 
Explanation:
From the question we are told that
The far point of the left eye is 
The near point of the left eye is 
The near point with the glasses on is 
From these parameter we can see that with the glass on that for near point the
Object distance would be 
Image distance would be 
To obtain the focal length we would apply the lens formula which is mathematically represented as

substituting values


converting to meters


Generally the power of the lens is mathematically represented as

Substituting values


From these parameter we can see that with the glass on that for far point the
Object distance would be 
Image distance would be 
To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

substituting values


converting to meters

Generally the power of the lens is mathematically represented as

Substituting values


This implies that the range of powers of the lens in his glass is

Answer:
236.3 x
C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x
m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq =
(Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x
)(1.6+1.6)/1.3
dq= 236.3 x
C