Answer:
c. length of the wall or column and the rate of placement of the concrete
Explanation:
when designing for wall and column form-works, it is of utmost important to know the length of the wall and the type of concrete placement to be used.
Concrete placement has methods and precaution to be taken when doing the form work
if the concrete placement is manually (hand or funnel) the form work height should not be more than 1 m to enable easy compaction and vibration of concrete in the form.
Also, if the form work length is too long and it is not well reinforced, it tends to burg if the force apply during concrete placement or during vibration is much.
Answer:
126000 J
Explanation:
Applying,
Q = cm(t₂-t₁).................. Equation 1
Where Q = Amount of heat, c = specifc heat capacity of water, m = mass of water, t₁ = Initial temperature, t₂ = Final temperature.
From the question,
Given: m = 2 kg, t₁ = 25°C, t₂ = 40°C
Constant: c = 4200 J/kg.°C
Substitute these value into equation 1
Q = 2×4200(40-25)
Q = 2×4200×15
Q = 126000 J
Explanation:
First, we need to determine the distance traveled by the car in the first 30 minutes,
.
Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance,
, in which the driver reduces the speed to 40km/hr is
.
Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by
.
.
Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

Therefore, the average speed of the car is 50 km/hr.
C. The number of F atoms in the reactants equals the number of F atoms in the products.