The force acting in the front direction is the 130N.
The frictional force is acting backwards 30N.
1) The net force is 130N - 30N = 100N
2) s = ut + (1/2)at^2 u = 0, Start from rest, s = 25m t =5.
25 = 0*5 + (1/2)* a * 5^2.
25 = 0 + 25/2 * a.
25 = (25/2)a. Divide 25 from both sides.
1 = (1/2)* a. Cross multiply.
2 = a.
a = 2 m/s^2.
3) Mass of the box
Net Force, F = ma
100 = m*2. Divide both sides by 2.
100/2 = m
50 = m.
m = 50 kg.
4) Final velocity , v = u + at.
v = 0 + 2*5 = 10 m/s.
Kinetic Energy, K = (1/2) * mv^2.
= 1/2 * 50 * 10 * 10.
= 2500 J.
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


Answer:
occurs when path-length difference is:
Δr=mlambda and m=0,1,2,3...
Explanation:
I think thats the answer.
Answer:It depends on the initial velocity of the projectile and the angle of projection. The maximum height of the projectile is when the projectile reaches zero vertical velocity. ... The horizontal displacement of the projectile is called the range of the projectile and depends on the initial velocity of the object
After the supernova they either form into a Black Hole, Neutron Star or White Dwarf. Depending