Answer: D) 3.2 × 10^8
Explanation: Insulators are best described as materials which are poor conductors of electricity and hence do not allow passage of electricity through them. Resistivity are hence used to describe property or characteristic of a material which does not allow the flow or passage of electric current.
In summary, materials which high resistivity values are referred to as Insulators. Conversely, those with low resistivity or high conductivity values are called conductors while those with intermediate values are named semiconductors.
In the question given above, the material with a resistivity value of 3.2 × 10^8 - - - has a very high resistivity value (320000000Ω), the other options given have very low resistivity values ; 0.0000000017, etc and are most likely to be conductors due to their excessively low resistivity values.
The light reactions could be viewed as analogous to a hydroelectric dam. In that case, the wall of the dam that holds back the water would be analogous to the thylakoid membrane.
Thylakoid membrane is present in cyanobacteria and chloroplasts of plants. It plays a crucial role in photosynthesis and photosystem II reactions.
In general, these are the regions where light-dependent reactions take place. The thylakoid membrane is a lipid-bound membrane that maintains potential difference and also controls the flow of liquids across the membrane during light reactions.
In the provided case, we can see that the wall of the dam holds back the water, similarly, in light-dependent reactions, thylakoid membranes control the liquid flow and also regulate the potential gradient across the membrane and also allow the selective proteins to pass through.
If you need to learn more about light reactions click here:
brainly.com/question/26623807
#SPJ4
Answer:
134.77 mm
Explanation:
Wave length of light λ = 599 x 10⁻⁹ m
Slit separation d = 20 x 10⁻⁶ m
Screen distance D = 3 m
Distance of second dark fringe from centre
= 1.5 x λ D / d
Putting the values given above
distance = 
= 134.77 x 10⁻³ m
= 134.77 mm.
Acceleration of the ball is 
Explanation:
The acceleration of the ball can be found by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass
a is the acceleration
For the ball in this problem, we have
m = 0.50 kg (mass)
F = 25 N (force)
thereofre, the acceleration of the ball is

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly