The 3% mass/volume H₂O₂ means 3 g of H₂O₂ in 100 ml of water.
Now, Molarity (M) = No. of moles of H₂O₂ / Volume of solution in liter
No. of moles of H₂O₂ = Mass / Molar mass = 3 g / 34 g/mol = 0.088 mol
So, molarity = 0.088 × 1000 ml / 100 ml = 0.88 M
In case of 2.25 % H₂O₂,
No of moles = 2.25 g / 34 g/mol = 0.066 mol
Molarity = 0.066 mol / 0.100 L = 0.66 M.
Answer:
Mixtures can be either homogeneous or heterogeneous. A mixture in which its constituents are distributed uniformly is called homogeneous mixture, such as salt in water. A mixture in which its constituents are not distributed uniformly is called heterogeneous mixture, such as sand in water.
V₁ = initial Volume of the balloon after it is blown up = 365 L
V₂ = new Volume of the balloon after it is taken outside = ?
T₁ = initial temperature of the balloon = 283 K
T₂ = new temperature of the balloon = 300 K
using the equation
V₁/V₂ = T₁/T₂
365/V₂ = 283/300
V₂ = 387 L
Answer:
C - show 7 neutrons in the nucleus
Explanation:
Use process of elimination:
-Answer A will not work because electrons are not in the nucleus.
-Answer B will change the atom's identity from nitrogen to fluorine; it will not work.
-Answer D will create a nitrogen ion, which is not what the prompt is asking for (an atom); it will not work.
The only logical answer is C, as that is the only one that is also true.