Answer:
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
Explanation:
The balanced oxidation half equation is;
6Fe^2+(aq) -------> 6Fe^3+(aq) + 6e
A redox reaction is actually an acronym for oxidation-reducation reaction. Since the both reactions are complementary, there can't be oxidation without reduction and there can't be reduction without oxidation.
The main characteristic of redox reactions is that electrons are transferred in the process. The number of electrons transferred is usually deduced from the balanced reaction equation. For this reaction, the balanced overall reaction equation is;
Cr2O7^2–(aq) + 6Fe^2+(aq) +14H^+(aq)→ 2Cr^3+(aq) + 6Fe^3+ (aq) + 7H2O(l)
It is clear from the equation above that six electrons were transferred. Thus six Fe^2+ ions lost one electron each in the oxidation half equation as shown in the balanced oxidation half equation above.
The correct answer would be the last one.
1. O2 is not a compound because it only contains one or more type of the same element atom.
2. O2 is a molecule because a molecule is one or more of the same element atom.
3. The law of conversion is that the mass of the system will stay the same when transfer takes place. Like if you had an equation O+H2—> H2O the mass will remain the same.
4. It will be equal to 10 because of law of conservation of matter.
5. One observation can be that the compound, reaction you’re observing, has change states.
Each correspond to a principal energy level
Question:
<em>What effects does the concentration of reactants have on the rate of a reaction?</em>
Answer:
<em>Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.</em>
<em>Increasing the concentration of reactants generally increases the rate of reaction because more of the reacting molecules or ions are present to form the reaction products. ... When concentrations are already high, a limit is often reached where increasing the concentration has little effect on the rate of reaction.</em>
Hope this helps, have a good day. c;