Answer:
Explanation:
Force = q ( v x B)
- 5.6 x 10⁻⁹ (v x - 1.25 k )
- 3.4x 10⁻⁷i + 7.4 x 10⁻⁷j
Let v = ai+bj +ck
Force = - 5.6 x 10⁻⁹ [(ai+bj +ck) x - 1.25 k )]
= - 5.6 x 10⁻⁹ ( 1.25aj - 1.25bi )
= - 7 a j + 7 b i
( 7bi - 7aj ) x 10⁻⁹
Comparing with given force
7b x 10⁻⁹ b = - 3.4 x 10⁻⁷
b = - 48.57
- 7 a x 10⁻⁹ = 7.4 x 10⁻⁷
a = - 105.7
velocity
= -105.7 i - 48.57 j + ck
b ) Component along k can not be obtained .
c ) v . F = ( -105.7 i - 48.57 j + ck ) . −(3.40×10−7N) ˆı +(7.40×10−7N) ˆȷ
= 105.7 x 3.4 x 10⁻⁷ - 48.57 x 7.4 x 10⁻⁷
= 359.38 x 10⁻⁷ - 359.38 x 10⁻⁷
=0
angle between v and F = 90 degree
Answer:
the normal force on the rock acts perpendicular to the bowl's surface.
Explanation:
As we know that Normal force is the reaction force of two contact surfaces which always act perpendicular to the contact surfaces
Here we know that the rock is moving inside the bowl
So Normal force on the rock must perpendicular to the surface of the bowl which always passes through the center of the bowl.
Since the rock is moving in vertical plane so it must have two acceleration
1) Tangential acceleration which will increase the magnitude of the speed along the tangential path
2) Centripetal acceleration which will change the direction of the rock
So here only correct option will be
the normal force on the rock acts perpendicular to the bowl's surface.
Answer:
D
Explanation:
Because kinetic energy do have more than potential energy: kinetic energy is when a object is moving. Potential energy is when something is at rest and has no movement what so ever
The correct answer is <span>A. By multiplying the change in mass by the square of the speed of light since the formula is expressed by </span>E = mc².
It’s 12 km
Because you multiply 8x1.5 and you get the answer.