Answer:
The angular acceleration increases.
Explanation:
The relationship between the torque and angular acceleration is :

Where
I is the moment of inertia
is the angular acceleration
We can see that the torque is directly proportional to the angular acceleration. So, when we have more torque it means angular acceleration increases. Hence, the correct option is (A).
Answer:
C ) 1.53
Explanation:
The critical angle of a material is given by the formula

where
c is the critical angle
n is the refractive index
This formula is valid if the second medium is air (which is the case of the problem).
In this problem, we know the critical angle:

Therefore we can rearrange the equation to find the refractive index:

Complete Question
A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top.
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.
Answer:

Explanation:
From the question we are told that:
Height 
Period 
Time 
Generally the equation for angular velocity is mathematically given by



Therefore



Therefore


Answer:
A. Kinetic energy is converted to electric potential energy, and the proton moves more slowly.
Explanation:
When a moving proton is brought close to a stationary one, the kinetic energy of the moving one is converted to electric potential and the proton moves more slowly.
Kinetic energy is the energy due to the motion of a body. A moving proton will possess this form of energy.
Two protons according to coulombs law will repel each other with an electrostatic force because they both have similar charges. This will increase their electric potential energy of both of them.
Potential energy is the energy at rest of a body. As it increases, the motion of a body will be slower and it will tend towards being stationary.
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.