The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer:
<h2>70,000 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2000 × 35
We have the final answer as
<h3>70,000 kg.m/s</h3>
Hope this helps you
The function of sleep theory supported by the illustration is sleep conserves and protects.
<h3>
Positive impact of sleep</h3>
From the first sentence, bats sleep a lot because they face little danger from predators and as such, they have a high-calorie diet of insects.
<h3>Negative impact of sleep</h3>
From the second sentence, cows sleep less, because they face more danger from predators and as such, they have a low-calorie diet of insects.
We can conclude that sleep helps to keep animal safe. Therefore, the correct option will be, "Sleep conserves and protects".
Learn more about important of sleep here: brainly.com/question/10224591
Using organs cloned from the cells of the patient <span>would prevent the rejection of tissue after an organ transplant.</span>
Answer:
Explanation:
The question here is that if sneezy hands from a similar rope while delivering presents at the earth's equator, what will be the tension in the rope be. Here is the solution:The tension on the rope when it is at pole, T= 455 NTo find, the tension, t= mgTo solve for mass, m= t/g. Substituting this we have, m=455/9.8. m=46.43 kgAssume that the downwards acceleration is, a= -46.43 m/s^2.T = mg + maT = (46.43 kg) ( 9.8 m/s^2) - (46.43 kg) (-46.43 m/s^2)T = 455.01 kg-m/s^2 - -2155.74 kg-m/s^2T = 2610.75 kg-m/s^2 = 2610.75 N