1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
2 years ago
8

You use a rope 2.00 m long to swing a 10 kg weight around your head. The tension in the rope is 20 N. In half a revolution how m

uch work in J is done by the rope on the weight
Physics
1 answer:
satela [25.4K]2 years ago
8 0

Answer:

No work is done on the weight. :3

You might be interested in
a specimen of oil having an initial volume of 5000cm³ is subjected to a pressure of 10⁴N/m² and the volume decreases by 0.20cm³.
inessss [21]

Answer:

 B = 2.5 10⁸ Pa

Explanation:

The volume modulus is defined by

           B = - \frac{P}{ \frac{\Delta V}{V} }

           

The negative fate is for the module to be positive since the volume change is negative

       

It is not necessary to reduce the volumes to the SI system, since they are both in the same units

             B = - \frac{10^4}{ \frac{-0.20}{5000} } = \frac{10^4}{4 \ 10^{-5} }

             B = 2.5 10⁸ Pa

4 0
3 years ago
Having difficulty finding the PE and KE for these values no mass is given. Does anyone know to go solve these?
Alexandra [31]

11) 1.04\cdot 10^7 J

12) 1.04\cdot 10^7 J

13) 50.0 m/s

14) 41.6 m/s

Explanation:

11)

The potential energy of an object is the energy possessed by the object due to its position relative to the ground. It is given by

PE=mgh

where

m is the mass of the object

g is the acceleration due to gravity

h is the height relative to the ground

Here in this problem, when the train is at the top, we have:

m = 8325 kg (mass of the train + riders)

g=9.8 m/s^2 (acceleration due to gravity)

h = 127 m (height of the train at the top)

Substituting,

PE=(8325)(9.8)(127)=1.04\cdot 10^7 J

12)

According to the law of conservation of energy, the total mechanical energy of the train must be conserved (in absence of friction). So we can write:

KE_t + PE_t = KE_b + PE_b

where

KE_t is the kinetic energy at the top

PE_t is the potential energy at the top

KE_b is the kinetic energy at the bottom

PE_b is the potential energy at the bottom

The kinetic energy is the energy due to motion; since the train is at rest at the top, we have

KE_t=0

Also, at the bottom the height is zero, so the potential energy is zero

PE_b=0

Therefore, we find:

KE_b=PE_t=1.04\cdot 10^7 J

13)

The kinetic energy of an object is the energy of the object due to its motion. Mathematically, it is given by

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

From question 12), we know that the kinetic energy of the train at the bottom is

KE=1.04\cdot 10^7 J

We also know that the mass is

m = 8325 kg

Therefore, we can calculate the speed of the train at the bottom:

v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2(1.04\cdot 10^7)}{8325}}=50.0 m/s

14)

At the top of the second hill, the total mechanical energy of the train is still conserved.

Therefore, we can write again:

KE_1 + PE_1 = KE_2 + PE_2

where

KE_1 is the kinetic energy at the top of the 1st hill

PE_1 is the potential energy at the top of the 1st hill

KE_2 is the kinetic energy at the top of the 2nd hill

PE_2 is the potential energy at the top of the 2nd hill

From the previous questions, we know that

KE_1=0

and

PE_1=1.04\cdot 10^7 J

The height of the second hill is

h = 39 m

So we can also find the potential energy at the second hill:

PE_2=mgh=(8325)(9.8)(39)=3.2\cdot 10^6 J

So, the kinetic energy at the second hill is

KE_2=PE_1-PE_2=1.04\cdot 10^7 - 3.2\cdot 10^6 =7.2\cdot 10^6 J

And so, the speed is

v=\sqrt{\frac{2KE_2}{m}}=\sqrt{\frac{2(7.2\cdot 10^6)}{8325}}=41.6 m/s

4 0
3 years ago
A thundercloud has an electric charge of 48.8 C near the top of the cloud and –41.7 C near the bottom of the cloud. The magnitud
IceJOKER [234]

Answer: 1.51 km

Explanation:

<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.

Or,   \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}}

Where Q1 and Q2 are magnitude of two charges and r is distance between them:

<u>Given:</u>

Q1 = Charge near top of cloud = 48.8 C

Q2 = Charge near the bottom of cloud = -41.7 C

Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N

k = 8.99 x 109Nm^2/C^2

<u>So,</u>

\begin{aligned}&7.98 \times 10^{6}=\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{48.8 \mathrm{C} \times 41.7 \mathrm{C}}{\mathrm{r}^{2}} \\&r=\sqrt{\frac{1.8294 \times 10^{13}}{7.98 \times 10^{6}}}=1.514  \times 10^{3} \mathrm{~m}=1.51 \mathrm{~km}\end{aligned}

Therefore, the separation between the two charges (r) = 1.51 km

3 0
2 years ago
Plzzz help will mark the brainliest
ANEK [815]
Ciara is winging....etc
The answer is : 0.60 N, toward the center of the circle


A satellite....etc
The Answer is : 7400 m/s


What is the .....etc
The Answer is : 2.60 m/s
8 0
3 years ago
A sound wave has a speed of 330m/s and a wavelength of 0.372 m. what is the frequency of the wave?
Alja [10]

Answer:

887.1Hz

Explanation:

Given parameters:

Speed of sound wave  = 330m/s

Wavelength  = 0.372m

Unknown:

Frequency  = ?

Solution:

To solve this problem, we use the expression below:

             Speed  = Frequency x wavelength

            330  = Frequency x 0.372

   Frequency  = 887.1Hz

5 0
3 years ago
Other questions:
  • A student increases the temperature of a 300 cm^3 balloon from 30c to 60c. what will the new volume of the ballon be
    11·2 answers
  • Describe three common issues that affect societies across places and times
    7·1 answer
  • Which element has the least protons in the nucleus?
    12·2 answers
  • A beetle crawls from x=1.09m to x=2.55m in 12.8s. what was the average velocity?
    12·1 answer
  • Suppose you are taking a walk one day when you see a tree branch snap at its base and begin to rotate downward with the break ne
    13·1 answer
  • A box with its contents has a total mass of 40 kg. It is dropped from a very high building. After reaching terminal speed, what
    7·2 answers
  • How is the energy of a photon related to its wavelength?
    10·1 answer
  • An experiment based at New Mexico’s Apache Point observatory uses a laser beam to measure the distance to the Moon with millimet
    13·1 answer
  • 5<br><br> What is the kinetic energy of a 6.00kg toy car that is going at 1.75m/s across the floor?
    8·1 answer
  • A baseball of mass 1.23 kg is thrown at a speed of 65.8 mi/h. What is its kinetic energy?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!