Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system
The distance traveled by the hockey player is 0.025 m.
<h3>The principle of conservation of linear momentum;</h3>
- The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.
The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

The time taken for the puck to reach 15 m is calculated as follows;

The distance traveled by the hockey player at the calculated time is;

Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
For example, an earthquake of magnitude 5.5 releases about 32 times as much energy as an earthquake measuring 4.5. Another way to look at this is that it takes about 900 magnitude 4.5 earthquakes to equal the energy released in a single 6.5 earthquake.
Explanation:
Answer:
Angular acceleration, is 
Explanation:
Given that,
Initial speed of the drill, 
After 4.28 s of constant angular acceleration it turns at a rate of 28940 rev/min, final angular speed, 
We need to find the drill’s angular acceleration. It is given by the rate of change of angular velocity.

So, the drill's angular acceleration is
.
Answer:
Perpendicular
Explanation:
The normal force is always directed perpendicular to the surface.
The normal force is the support force that surfaces exerts on the objects in contact with them.
The force is needed to prevent a body from going through another.
- Normal forces are projects perpendicular to the surface.
- This force is a very component when treating free body diagrams.