Answer:
a) The student must run flight of stairs to lose 1.00 kg of fat 709.5 times.
b) Average power
P(w)= 1062.07 [w]
P(hp)=1.42 [hp]
c) This activity is highly unpractical, because the high amount of repetitions he has to due in order to lose, just 1 Kg of fat.
Explanation:
First, lets consider the required amount of work to move the mass of the student. (considering running stairs just as a vertical movement)
Work:

Where m is the mass of the student, g is gravity (9.8 m/s) and d is the total distance going up the stairs (0.15m *85steps= 12.75m )
![W= F*d= m*g*d=85* 9.8*12.75=10620.75 [J]](https://tex.z-dn.net/?f=W%3D%20F%2Ad%3D%20m%2Ag%2Ad%3D85%2A%209.8%2A12.75%3D10620.75%20%5BJ%5D)
Converting from Joules to Kcals:

Now lets take into account the efficiency of the human body (20%)
2.537 ---> 20%
x ---> 100%

So the student is consuming 12.685 KCals each time he runs up the stairs.
Now,
1 g --> 9 Kcals
1000 g --> 9000KCals
Burning 1 g of fat, requieres 9 KCals, 1000g burns 9000KCals. So in order to burn a 1Kg of fat:

He must run up the stairs 709.5 times, to burn 1 Kg of fat.
********************
For b) just converting units, taking into account the time lapse. (53103.75 is the 100% of the energy in joules, from converting 12.685Kcals to joules)
![Power=\frac{Joules}{Seconds} =\frac{53103.75}{50} =1062.075 [W]\\](https://tex.z-dn.net/?f=Power%3D%5Cfrac%7BJoules%7D%7BSeconds%7D%20%3D%5Cfrac%7B53103.75%7D%7B50%7D%20%3D1062.075%20%5BW%5D%5C%5C)
![P(hp)=\frac{P(w)}{745.7} =\frac{1062.075}{745.7} =1.42[hp]](https://tex.z-dn.net/?f=P%28hp%29%3D%5Cfrac%7BP%28w%29%7D%7B745.7%7D%20%3D%5Cfrac%7B1062.075%7D%7B745.7%7D%20%3D1.42%5Bhp%5D)
*****
0.5mv^2
0.5 times 40 times 3^2
The kinetic energy is 180
<h3><u>
For the aceleration:</u></h3>
First, let's find the resultant, and <u>applicate 2nd law of Newton</u> using the resultant, so:
R = ma
F - Ff = ma
Data:
F = Force = 1150 N
Ff = Friction force = 490 N
m = Mass = 150 kg
a = Aceleraction = ?
Replacing according our data:
1150 N - 490 N = 150 kg * a
660 N = 150 kg * a
660 N / 150 kg = a
a = 4,4 m/s² ← Aceleration of the object
<h3><u>For the normal force:</u></h3>
The normal force IS NOT the resultant force, the normal force's the force between the ground and the object, in another words, is the weight of the object, and for the weight:
w = mg
w = 150 kg * 10 m/s²
w = 1500 N ← Normal force between object and ground.
Answer:
81.9756 m/s
16.8 m
4.8795 Hz
Explanation:
m = Mass of string = 0.12 kg
L = Length of string = 8.4 m
T = Tension on string = 96 N
Linear density is given by

Spee of the wave is given by

The speed of the waves on the string is 81.9756 m/s
Wavelength is given by

The longest possible wavelength is 16.8 m
Frequency is given by

The frequency of the wave is 4.8795 Hz