Answer:
(0.5, 1.3)(0.5, 1.3)
Step-by-step explanation:
Given equations are:
As we can see that the given equations are linear equations which are graphed as straight lines on graph. The solution of two equations is the point of their intersection on the graph.
We can plot the graph of both equations using any online or desktop graphing tool.
We have used "Desmos" online graphing calculator to plot the graph of two lines (Picture Attached)
We can see from the graph that the lines intersect at: (0.517, 1.267)
Rounding off both coordinates of point of intersection to nearest tenth we get
(0.5, 1.3)
Hence,
(0.5, 1.3) is the correct answer
Keywords: Linear equations, variables
Answer:
(a) The probability of the event (<em>X</em> > 84) is 0.007.
(b) The probability of the event (<em>X</em> < 64) is 0.483.
Step-by-step explanation:
The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 64.
The probability mass function of a Poisson distribution is:

(a)
Compute the probability of the event (<em>X</em> > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
![=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007](https://tex.z-dn.net/?f=%3D1-%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3D1-%5Be%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5D%5C%5C%3D1-%5Be%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B84%7D%7D%7B84%21%7D%5D%5D%5C%5C%3D1-0.99308%5C%5C%3D0.00692%5C%5C%5Capprox0.007)
Thus, the probability of the event (<em>X</em> > 84) is 0.007.
(b)
Compute the probability of the event (<em>X</em> < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
![=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483](https://tex.z-dn.net/?f=%3D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B63%7D%7D%7B63%21%7D%5D%5C%5C%3D0.48338%5C%5C%5Capprox0.483)
Thus, the probability of the event (<em>X</em> < 64) is 0.483.
We know that
[volume of larger figure]=[scale]³*[volume of smaller figure]
scale=∛(volume of larger figure/volume of smaller figure)
scale=∛(2744/729)-----> 1.56
[surface area of the larger figure]=scale²*[<span>surface area of the smaller figure]
</span>[surface area of the smaller figure]=[surface area of the larger figure]/scale²
[surface area of the smaller figure]=[392]/1.56²----> 162 mm²
the answer is
the surface area of the smaller figure is 162 mm²
Answer:
30.40/3.2=9.5 so he pays $9.50 per ounce of steak
Step-by-step explanation:
Well .85 x 0.03 = 0.0255
.85 + 0.0255 = .8755
So Either 87 Or 88 Cents But Most Likely 88 Cents