Answer:
3.68 grams.
Explanation:
First we <u>convert 9.5 g of NaCl into moles of NaCl</u>, using its<em> molar mass</em>:
9.5 g ÷ 58.44 g/mol = 0.16 mol NaCl
In<em> 0.16 moles of NaCl there are 0.16 moles of sodium </em>as well.
We now <u>convert 0.16 moles of sodium into grams</u>, using <em>sodium's molar mass</em>:
0.16 mol * 23 g/mol = 3.68 g
C) Tc-99 is a radioactive isotope also known as radioisoptope.
Answer: You can use Boyle's law, which states that pressure is inversely related to volume when other variables are held constant. If the final pressure of a gas is half of the initial, the volume must double if temperature is to remain the same.
Explanation:
Answer:
The particles that make up a substance in its liquid state have <u>more </u>kinetic energy than those of the same substance in its solid-state.
For a solid to melt, energy must be <u>added to</u> the system.
For a liquid to freeze, energy must be <u>removed from</u> the system.
Answer:

Explanation:
Hello.
In this case, since this is a system in which the water is heated up and the metal is cooled down in a calorimeter which is not affected by the heat lose-gain process, we can infer that the heat lost by the metal is gained be water, it means that we can write:

Thus, in terms of masses, specific heats and temperatures we can write:

Whereas the equilibrium temperature is the given final temperature of 28.4 °C and we can compute the specific heat of the metal as shown below:

Plugging the values in and since the density of water is 1.00 g/mL so the mass is 80.0g, we obtain:

Best regards!